Abstract

Our first aim in this note is to prove some inequalities relating the eigenvalues of a Hermitian matrix with the eigenvalues of its principal matrices induced by a partition of the index set. One of these inequalities extends an inequality proved by Hoffman in [9].

Secondly, we apply our inequalities to estimate the eigenvalues of the adjacency matrix of a graph, and prove, in particular, that for every \(r \geq 3 \), \(c > 0 \) there exists \(\beta = \beta(c, r) \) such that for every \(K_r \)-free graph \(G = G(n, m) \) with \(m > cn^2 \), the smallest eigenvalue \(\mu_n \) of \(G \) satisfies

\[
\mu_n \leq -\beta n.
\]

Similarly for every \(r \geq 3 \), \(c < 1/2 \) there exists \(\gamma = \gamma(c, r) \) such that for every graph \(G = G(n, m) \) with \(m < cn^2 \) and independence number \(\alpha(G) < r \), the second eigenvalue \(\mu_2 \) of \(G \) satisfies

\[
\mu_2 > \gamma n
\]

for sufficiently large \(n \).

1 Introduction

Given an \(m \times n \) matrix \(A \) and nonempty sets \(I \subseteq [m], J \subseteq [n] \), we denote by \(A[I, J] \) the submatrix of the entries \(a_{ij} \) of \(A \) with \(i \in I \) and \(j \in J \); we set \(A_I = A[I, I] \). For every \(n \times n \) matrix \(A \) we denote by \(\mu_1(A), \ldots, \mu_n(A) \) its spectrum; if \(A \) has only real eigenvalues we index them in decreasing order:

\[
\mu_{\max}(A) = \mu_1(A) \geq \ldots \geq \mu_n(A) = \mu_{\min}(A).
\]

Let \(A \) be an \(n \times n \), \(B \) an \(m \times m \) matrix, and \(A \) and \(B \) have only real eigenvalues. As usual we say that the eigenvalues of \(A \) and \(B \) are interlaced if for every \(i = 1, \ldots, m \) the inequalities

\[
\mu_i(A) \geq \mu_i(B) \geq \mu_{n-m+i}(A)
\]
hold. The interlacing is called tight if there exists an integer \(k (0 \leq k \leq m) \) such that

\[\mu_i (A) = \mu_i (B) \text{ for } 0 \leq i \leq k \text{ and } \mu_{n-m+i} (A) = \mu_i (B) \text{ for } k + 1 \leq i \leq m. \]

Our graph-theoretic notation is standard (see e.g., [2]). For simplicity, all graphs are assumed to be defined on the vertex set \([n] = \{1, \ldots, n\}\). The eigenvalues of a graph \(G \) are the eigenvalues of its adjacency matrix.

Haemers [6] used interlacing techniques to estimate eigenvalues of graphs (see his survey paper [8] for more detailed exposition of the topic and [5] for further development). In this note we use these methods to prove some new inequalities and improve some others. In particular, we show that if \([n] = N_1 \cup \ldots \cup N_k\) is a partition of the index set into nonempty sets and \(A \) is a Hermitian matrix of size \(n \) then for all integers \(m_1, \ldots, m_k \) with \(0 \leq m_j < |N_j| \),

\[
\mu_1 (A) + \ldots + \mu_{k-1} (A) + \mu_{n-m_1-\ldots-m_k} (A) \geq \sum_{i=1}^k \mu_{|N_i|-m_i} (A_{N_i})
\]

and

\[
\mu_{m_1+\ldots+m_k+1} (A) + \mu_{n-k+1} (A) + \ldots + \mu_n (A) \leq \sum_{i=1}^k \mu_{m_i+1} (A_{N_i}).
\]

The latter was stated for real symmetric matrices by Hoffman in [9]; however, his induction argument is based on a result of Aronszajn [1] that is not readily extendable to a Hermitian \(A \). Moreover, the result used by Hoffman is stronger than the one actually proved by Aronszajn in [1]. We do not attempt to fill this gap - our approach is direct and self-contained.

Furthermore, we shall prove that if \(A = (a_{ij}) \) is Hermitian matrix of size \(n \), and \([n] = N_1 \cup \ldots \cup N_k\) is a partition into nonempty sets, then

\[
\mu_1 (A) + \ldots + \mu_{n-k+1} (A) \geq \sum_{r=1}^k \frac{1}{|N_r|} \sum_{i,j \in N_r} a_{ij},
\]

and

\[
\mu_{n-k+1} (A) + \ldots + \mu_n (A) \leq \sum_{r=1}^k \frac{1}{|N_r|} \sum_{i,j \in N_r} a_{ij} - \frac{1}{n} \sum_{i,j \in [n]} a_{ij}.
\]

2 \hspace{1em} Eigenvalues of Hermitian matrices

In the proof of our first result we shall make use of the following theorem of Cauchy (for a proof, see [10], p. 189).

Theorem 1. Let \(A \) be a Hermitian matrix and \(A' \) be its proper principal submatrix. Then the eigenvalues of \(A \) and \(A' \) are interlaced. \(\square \)
As usual, we denote by A^* the adjoint of a matrix A. We call a partition $[n] = N_1 \cup \ldots \cup N_k$ proper if none of the sets N_1, \ldots, N_k is empty.

Theorem 2. Suppose $2 \leq k \leq n$ and let A be a Hermitian matrix of size n. For every proper partition $[n] = N_1 \cup \ldots \cup N_k$, we have

$$
\mu_1(A) + \mu_{n-k+1}(A) + \ldots + \mu_n(A) \leq \sum_{i=1}^{k} \mu_1(A_{N_i}).
$$

(1)

Proof. For $k = n$ both sides of (1) are equal to $\text{tr}(A)$, the trace of A, so we may suppose $k < n$. To simplify the notation we take

$$
N_j = [n_j + 1, \ldots, n_{j+1}],
$$

where n_1, \ldots, n_{k+1} are integers with $0 = n_1 < \ldots < n_j < \ldots < n_{k+1} = n$. Let (x_1, \ldots, x_n) be an eigenvector with eigenvalue $\mu_1(A)$. For every $j \in [k]$, set $y_j = (x_{n_j+1}, \ldots, x_{n_{j+1}})$ and let $y_j' = (\|y_j\|, 0, \ldots, 0) \in \mathbb{C}^{(I_j)}$. For every $j \in [k]$ there is a unitary matrix B_j such that $y_j = B_jy_j'$, as $\|y_j\| = \|y_j'\|$. The $n \times n$ matrix

$$
U = \begin{pmatrix}
B_1 & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & B_k
\end{pmatrix}
$$

is unitary, i.e. $U^{-1} = U^*$, and thereby the matrix

$$
U^*AU = \begin{pmatrix}
B_1^*A[N_1, N_1]B_1 & \ldots & B_1^*A[N_1, N_k]B_k \\
\vdots & \ddots & \vdots \\
B_k^*A[N_k, N_1]B_1 & \ldots & B_k^*A[N_k, N_k]B_k
\end{pmatrix}
$$

has the same spectrum as A. Furthermore, denote the entries of B_s by $b_{pq}^{(s)}$ and let $D = (d_{pq}) \in M_k$ be the Hermitian matrix defined by

$$
d_{pq} = \sum_{i=0}^{k-p+1} \sum_{j=0}^{k-q+1} b_{pq}^{(s)} a_{ij} b_{ij}^{(s)}.
$$

In other words, D consists of the upper left corner entries of the blocks of U^*AU. We shall prove that $\mu_1(A)$ is an eigenvalue of D with eigenvector $(\|y_1\|, \ldots, \|y_k\|)$. Indeed, for every $s \in [k]$ we have

$$
\sum_{r=1}^{k} d_{sr} \|y_r\| = \sum_{r=1}^{k} \sum_{i=k_r+1}^{k_{r+1}} \sum_{j=k_r+1}^{k_{r+1}} b_{ij}^{(s)} a_{ij} b_{ij}^{(r)} \|y_r\|
$$

$$
= \sum_{i=k_s+1}^{k_{s+1}} \sum_{r=1}^{k} \left(\sum_{j=k_r+1}^{k_{r+1}} a_{ij} x_j \right) = \sum_{i=k_s+1}^{k_{s+1}} b_{ii}^{(s)} \mu_1 x_i
$$

$$
= \mu_1 \|y_s\|.
$$
From Theorem 1, for every $i \in [k]$, we have $\mu_{n-k+i} (A) \leq \mu_i (D)$ and thus,
\[
\mu_1 (A) + \mu_{n-k+1} (A) + \ldots + \mu_n (A) \leq \mu_1 (D) + \ldots + \mu_k (D) = tr (D).
\]
As no diagonal entry of a Hermitian matrix exceeds its largest eigenvalue, we have, for every $i \in [k]$,
\[
d_{ii} \leq \mu_1 (B_i^* A_{N_i} B_i) = \mu_1 (A_{N_i}),
\]
completing the proof of (1).

Let $\{ e_1, \ldots, e_n \}$ be the standard basis in \mathbb{C}^n. For every $M \subset [n]$ we write P_M for the orthogonal projection of \mathbb{C}^n on the space $s (M) = \text{span} \{ e_i | i \in M \}$. Let $Q_M : s (M) \to \mathbb{C}^n$ be defined by
\[
Q_M (u) = v, \ v \in P_M^{-1} (u), \text{ and } (v)_i = 0 \text{ for every } i \notin M.
\]
Observe that for every self-adjoint linear operator $T : \mathbb{C}^n \to \mathbb{C}^n$, the operator $T_M = P_M T Q_M$ maps $s (M)$ into $s (M)$ and is self-adjoint; also, if A is the matrix of T then A_M is the matrix of T_M.

Now we shall restate Theorem 2 in operator form.

Theorem 3. Suppose $2 \leq k \leq n$ and let $T : \mathbb{C}^n \to \mathbb{C}^n$ be a self-adjoint operator. For every proper partition $[n] = N_1 \cup \ldots \cup N_k$, we have
\[
\mu_1 (T) + \mu_{n-k+1} (T) + \ldots + \mu_n (T) \leq \sum_{i=1}^k \mu_1 (T_{N_i}).
\]
We shall prove that Theorem 2 implies a more general assertion.

Theorem 4. Suppose $2 \leq k \leq n$ and let A be a Hermitian matrix of size n. For every proper partition $[n] = N_1 \cup \ldots \cup N_k$ and all integers m_1, \ldots, m_k with $0 \leq m_j < |N_j|$, we have
\[
\mu_{m_1+\ldots+m_k+1} (A) + \mu_{n-k+1} (A) + \ldots + \mu_n (A) \leq \sum_{i=1}^k \mu_{m_i+1} (A_{N_i}).
\]

Proof. Let T be the self-adjointed linear operator corresponding to A. As above we take
\[
N_j = [n_j + 1, \ldots, n_{j+1}],
\]
where n_1, \ldots, n_{k+1} are integers with $0 = n_1 < \ldots < n_j < \ldots < n_{k+1} = n$. For every $j \in [k]$, select a sequence of orthogonal eigenvectors $y_{1j}, \ldots, y_{mj} \in \mathbb{C}^{|N_j|}$ to the eigenvalues $\mu_1 (T_{N_j}), \ldots, \mu_{m_j} (T_{N_j})$; if $m_j = 0$ we select the empty sequence. Set $L_j = \text{span} \{ e_{n_j+1}, \ldots, e_{n_{j+1}} \}$, and let E be the set of all vectors $Q_{L_j} \left(y_{rj} \right)$ ($j \in [k], 1 \leq r \leq m_j$); clearly any two distinct members of E are orthogonal and $|E| = m_1 + \ldots + m_j$. Let P be the orthogonal projection of \mathbb{C}^n on the
To complete the proof observe that the eigenvectors to

\[\mu \]

hence, For every

\[j \in [k] \], every eigenvector of

\[T'_{N_j} \] is orthogonal to every

\[y_1^{(j)}, \ldots, y_{m_j}^{(j)} \], hence,

\[\mu_1 \left(T'_{N_j} \right) \leq \mu_{m_j+1} \left(T_{N_j} \right). \]

To complete the proof observe that the eigenvectors to

\[\mu_1 \left(T' \right), \mu_{n-k+1} \left(T' \right), \ldots, \mu_n \left(T' \right) \]

belong to \(E^\perp \); hence, from the Courant-Fischer theorem (e.g. see [10], p. 179), we have

\[\mu_1 \left(T' \right) \geq \mu_{n+1} \left(T \right) = \mu_{n+1} \left(A \right), \quad \text{and} \quad \mu_{n-i} \left(T' \right) \leq \mu_{n-i} \left(T \right) = \mu_{n-i} \left(A \right) \quad \text{for} \quad i = 0, \ldots, k - 1. \]

Applying inequality (1) to the matrix \(-A \), we see that

\[\mu_1 \left(A \right) + \ldots + \mu_{k-1} \left(A \right) + \mu_{n-m_1-\ldots-m_k} \geq \sum_{i=1}^{k} \mu_{|N_i| - m_i} \left(A_{N_i} \right) \]

An immediate consequence from Theorem 2 is the following result.

Corollary 5. Let \(A \) be the adjacency matrix of a graph \(G \) of order \(n \). Then

\[\mu_n \left(A \right) + \mu_1 \left(A \right) \leq n - \alpha - 1, \]

where \(\alpha \) is the independence number of \(G \). \(\Box \)

Note that for \(G = \overline{K_n} + K_{n-\alpha} \) we have equality in (2).

Let \(I_n \) be the \(n \times n \) identity matrix. The result below, whose basic idea goes back to Courant and Hilbert [4], was proved by Haemers ([6], [7]) for real \(S \) and symmetric \(A \) but it is easily seen that it holds for \(S \) complex and \(A \) Hermitian as well.

Theorem 6. Let the matrix \(S \) of size \(m \times n \) be such that \(S^* S = I_m \) and let \(A \) be a Hermitian matrix of size \(n \) with eigenvalues \(\mu_1 \geq \ldots \geq \mu_n \). Set \(B = S^* AS \) and let \(\eta_1 \geq \ldots \geq \eta_m \) be the eigenvalues of \(B \) and \(v_1, \ldots, v_m \) the respective eigenvectors.

(i) the eigenvalues of \(A \) and \(B \) are interlaced,

(ii) if \(\eta_i = \mu_i \), or \(\eta_i = \mu_{n-m+i} \), then \(B \) has an eigenvector \(u \) corresponding to \(\eta_i \) such that \(Su \) is an eigenvector of \(A \),

(iii) if for some integer \(l \), \(\eta_i = \mu_i \) for \(i = 1, \ldots, l \) (or \(\eta_i = \mu_{n-m+i} \) for \(i = l, \ldots, m \)) then \(S v_i \) is an eigenvector of \(A \) for \(i = 1, \ldots, l \) (respectively for \(i = l, \ldots, m \)),

(iv) if the interlacing is tight then \(SB = AS \). \(\Box \)

We shall use Theorem 6 to derive two simple inequalities for the eigenvalues of Hermitian matrices.
Theorem 7. Suppose \(2 \leq k \leq n\) and let \(A = (a_{ij})\) be a Hermitian matrix of size \(n\). For every proper partition \([n] = N_1 \cup \ldots \cup N_k\) we have

\[
\mu_1(A) + \ldots + \mu_k(A) \geq \sum_{r=1}^{k} \frac{1}{|N_r|} \sum_{i,j \in N_r} a_{ij},
\]
and

\[
\mu_{k+1}(A) + \ldots + \mu_n(A) \leq \sum_{r=1}^{k} \frac{1}{|N_r|} \sum_{i,j \in N_r} a_{ij} - \frac{1}{n} \sum_{i,j \in [n]} a_{ij}.
\]

Proof. Suppose \(A = (a_{ij})\); set

\[
e_{rs} = \sum_{i \in N_r, j \in N_s} a_{ij}, \quad \text{and} \quad e = \sum_{i,j \in [n]} a_{ij}.
\]

Note that \(e_{11}, \ldots, e_{kk}\) and \(e\) are real numbers.

For every \(i \in [k]\), set \(n_i = |N_i|\); following Haemers ([6] and [7]), define the \(k \times n\) matrix \(S = (s_{ij})\) by

\[
s_{ij} = \begin{cases}
\frac{1}{\sqrt{n_i}} & j \in N_i, \\
0 & j \notin N_i,
\end{cases}
\]

It is easy to check that \(S^*S = I_k\), the identity matrix of size \(k\); thus, by Theorem 6, the eigenvalues of the matrix \(B = S^*AS\) and \(A\) are interlaced, i.e., for every \(i \in [k]\), we have

\[
\mu_i(A) \geq \mu_i(B) \geq \mu_{n-k+1}(A),
\]

so

\[
\mu_1(A) + \ldots + \mu_k(A) \geq \mu_1(B) + \ldots + \mu_k(B) = \text{tr}(B).
\]

Easy computations show that \(b_{ij} = e_{ij}/\sqrt{n_i n_j}\) for all \(i, j \in [k]\), so (3) follows.

Furthermore, for every \(i \in [k]\) set \(x_i = \sqrt{n_i}\) and let \(x = (x_1, \ldots, x_k)\). Then

\[
\|x\|^2 = n_1 + \ldots + n_k = n,
\]

and

\[
\langle Bx, x \rangle = \sum_{i=1}^{k} \sum_{j=1}^{k} \frac{e_{ij}}{\sqrt{n_i n_j}} \sqrt{n_i} \sqrt{n_j} = e;
\]

thus, \(\mu_1(B) \geq e/\|x\|^2 = e/n\). Hence, from (6),

\[
\mu_n(A) + \ldots + \mu_{n-k+2}(A) \leq \mu_2(B) + \ldots + \mu_k(B) = \text{tr}(B) - \mu_1(B)
\]

\[
\leq \frac{e_{11}}{n_1} + \ldots + \frac{e_{kk}}{n_k} - \frac{e}{n},
\]

and (4) is proved as well.

Observe that for nonnegative matrices \(A = (a_{ij})\) of size \(n\) and with equal row sums, we have

\[
\mu_1(A) = \frac{1}{n} \sum_{i,j \in [n]} a_{ij};
\]

thus, for such matrices (4) implies (1).
3 Graph eigenvalues

The (combinatorial) Laplacian of a graph G is defined as $L(G) = D(G) - A(G)$, where $D(G)$ is the diagonal matrix of the degree sequence of G and $A(G)$ is the adjacency matrix of G. Let

$$0 = \lambda_1 (G) \leq ... \leq \lambda_n (G)$$

be the eigenvalues of $L(G)$.

If V_1, V_2 are two disjoint subsets of $V(G)$ we denote by $e(V_1, V_2)$ the number of $V_1 - V_2$ edges.

As an easy consequence of Theorem 7 we obtain the following.

Theorem 8. Suppose $2 \leq k \leq n$ and let G be a graph of order n. For every proper partition $[n] = N_1 \cup ... \cup N_k$ we have

$$\sum_{i=2}^{k} \lambda_i (G) \leq \sum_{1 \leq i < j \leq n} e(N_i, N_j) \left(\frac{1}{|N_i|} + \frac{1}{|N_j|} \right) \leq \sum_{i=0}^{k-1} \lambda_{n-i} (G). \quad (7)$$

Proof. For the matrix $L(G) = (l_{ij})$ we immediately see that

$$e_{rr} = \sum_{i,j \in N_r} l_{ij} = e(N_r, [n] \setminus N_r), \text{ and } e = \sum_{i,j \in [n]} l_{ij} = 0.$$

Hence, applying Theorem 7 with $A = L(G)$, from (4) and (3) we obtain (7). \qed

Observe that for $k = 2$, from Theorem 8 we obtain the basic inequalities about the size of a cut of a graph G, namely that if $V(G) = N_1 \cup N_2$ is a proper partition then

$$\lambda_2 (G) \leq \frac{e(N_1, N_2)}{|N_1| |N_2|} \leq \lambda_n (G).$$

In fact, Theorem 7 implies that this inequality holds also for weighted graphs as well, as in Mohar ([12], p. 234).

Given a graph G with adjacency matrix A, set $\mu_i (G) = \mu_i (A)$. Applying Theorem 7 with $k = 2$ to the adjacency matrix of a graph G we obtain the following corollary.

Corollary 9. Suppose G is a graph of order $n \geq 2$ and $V(G) = N_1 \cup N_2$ is a proper partition. Then

$$\mu_n (G) \leq \frac{2e(N_1)}{|N_1|} + \frac{2e(N_2)}{|N_2|} - \frac{2e(G)}{n}.$$

Fix a graph $G = G(n, m)$ of order $n \geq 2$ and set $V = V(G)$. The function

$$\Phi(G, t) = \min_{U \subseteq V, |U| = t} \left\{ \frac{e(U)}{t} + \frac{e(V \setminus U)}{n-t} - \frac{m}{n} \right\}.$$
has been investigated in [13]; in particular, it was proved that for every \(r \geq 3, c > 0 \) there exists some \(\beta = \beta(c, r) \) such that for every \(K_r \)-free graph \(G = G(n, m) \) with \(e > cn^2 \),

\[
\Phi(G, \lfloor n/2 \rfloor) \leq -\beta n.
\]

This, together with Corollary 9, implies the following.

Theorem 10. For every \(r \geq 3, c > 0 \) there exists \(\beta = \beta(c, r) \) such that for every \(K_r \)-free graph \(G = G(n, m) \) with \(m > cn^2 \),

\[
\mu_n(G) \leq -\beta n.
\]

Similar results hold for \(\mu_2(G) \).

Lemma 11. Suppose \(G \) is a graph of order \(n \geq 2 \) and \(V(G) = N_1 \cup N_2 \) is a proper partition. Then

\[
\mu_2(G) \geq \frac{e(N_1)}{|N_1|} + \frac{e(N_2)}{|N_2|} - \frac{e(N_1) - e(N_2)}{|N_1||N_2|} - \frac{e(N_1, N_2)}{\sqrt{|N_1||N_2|}}.
\]

Proof. Set \(n_i = |N_i| \) for \(i = 1, 2 \); define a \(2 \times n \) matrix \(S = (s_{ij}) \) by (5). As in the proof of Theorem 7 we obtain that \(\mu_2(G) \geq \mu_2(B) \) where

\[
B = \begin{pmatrix}
2e(N_1)/n_1 & e(N_1, N_2)/\sqrt{n_1n_2} \\
e(N_1, N_2)/\sqrt{n_1n_2} & 2e(N_2)/n_2
\end{pmatrix}.
\]

Hence we see that

\[
\mu_2(G) \geq \frac{e(N_1)}{n_1} + \frac{e(N_2)}{n_2} - \sqrt{\left(\frac{e(N_1)}{n_1} - \frac{e(N_2)}{n_2}\right)^2 + \frac{e^2(N_1, N_2)}{n_1n_2}}
\]

and the result follows.

We write \(\Gamma(u) \) for the set of vertices adjacent to \(u \), and set \(d(u) = |\Gamma(u)| \). As usual \(\alpha(G) \) denotes the independence number of a graph \(G \). Theorem 10 has the following analog for \(\mu_2 \) of graphs with bounded \(\alpha(G) \).

Theorem 12. For every \(r \geq 3, c < 1/2 \) there exists \(\gamma = \gamma(c, r) \) such that for every graph \(G = G(n, m) \) with \(m < cn^2 \) and \(\alpha(G) < r \),

\[
\mu_2(G) > \gamma n
\]

for sufficiently large \(n \).

Proof. We were not able to derive this theorem from a general matrix theorem — rather, we give a self-contained proof that uses induction on \(r \).

Denote by \(\overline{G} \) the complement of a graph \(G \). Since \(\alpha(G) < r \) if and only if \(\overline{G} \) is \(K_r \)-free, it is sufficient to prove the following assertion.

For every \(r \geq 3, c > 0 \) there exists \(\gamma = \gamma(c, r) \) such that for every \(K_r \)-free graph \(G = G(n, m) \) with \(m > cn^2 \),

\[
\mu_2(\overline{G}) > \gamma n
\]
for sufficiently large n.

Observe that the number $C(G)$ of quadrilaterals (4-cycles) of G satisfies

$$2C(G) \geq \sum_{u,v \in V(G), u \neq v} \left(\frac{|\Gamma (u) \cap \Gamma (v)|}{2} \right) \geq \left(\frac{n}{2} \right) \left(\binom{n}{2} \right)^{-1} \sum_{u,v \in V(G), u \neq v} |\Gamma (u) \cap \Gamma (v)|.$$

Since

$$\sum_{u,v \in V(G), u \neq v} |\Gamma (u) \cap \Gamma (v)| = \sum_{u \in V(G)} \left(\frac{d(u)}{2} \right) \geq m \left(\frac{2m}{n} - 1 \right),$$

we see that

$$2C(G) \geq m \left(\frac{2m}{n} - 1 \right) \left(\frac{2m}{n} \left(\frac{2m}{n} - 1 \right) - 1 \right).$$

Hence, if $n > 4/c^2$ we have

$$\left(\frac{2m}{n} - 1 \right) \left(\frac{2m}{n} \left(\frac{2m}{n} - 1 \right) - 1 \right) \geq (2cn-1) (2c(2cn-1)-1)$$

$$> 8c^3n^2 - 2c(2c+1)n > 7c^3n^2$$

and thus,

$$\frac{4C(G)}{m} > 14c^3n^2,$$

so, there is an edge (u,v) that is contained in at least $14c^3n^2$ quadrilaterals.

We shall prove that there exist two disjoint sets $V_1 \subset \Gamma (u)$ and $V_2 \subset \Gamma (v)$ with $e(V_1, V_2) > 2c^3n^2$. Set $U = \Gamma (u), W = \Gamma (v)$; for the number C' of quadrilaterals containing the edge (u,v) we have

$$C' = e(U \setminus W, W \setminus U) + e(U \setminus W, U \cap W) + e(W \setminus U, U \cap W) + 2e(U \cap W) \geq 14c^3n^2.$$

Thus, one of the following inequalities holds

$$e(U \setminus W, W \setminus U) \geq 2c^3n^2, $$

$$e(U \setminus W, U \cap W) \geq 2c^3n^2, $$

$$e(W \setminus U, U \cap W) \geq 2c^3n^2, $$

$$e(U \cap W) \geq 4c^3n^2.$$

If one of the first three inequalities holds then V_1 and V_2 clearly exist. Observing that for every graph the size of the maximal cut is at least half the graph size, we see that there is a bipartition $U \cap W = V_1 \cup V_2$ with $e(V_1, V_2) > 2c^3n^2$, and this proves our assertion in the fourth case as well.
We may and shall assume that $|V_1| \leq |V_2|$; hence, obviously, $|V_1| > 2c^3 n$. By averaging we see that there is set $U \subset V_2$ with $|U| = |V_1|$ and

$$e(V_1, U) \geq \frac{|V_1|}{|V_2|} e(V_1, V_2) \geq \frac{|V_1|}{n} 2c^3 n^2 \geq 2c^3 |V_1|^2.$$

Set $N_1 = V_1$, $N_2 = U$, $k = |N_1| = |N_2|$; clearly, $k = |V_1| > 2c^3 n$.

Consider first the case $r = 3$. Then, as $N_1 \subset \Gamma (u)$, $N_2 \subset \Gamma (v)$, and G has no triangles, we have $e (N_1) = e (N_2) = 0$. Therefore, by applying Lemma 11 to the graph $G_1 = G [N_1 \cup N_2]$, we see that

$$\mu_2 (G_1) \geq k - 1 - \frac{k^2 - e (N_1, N_2)}{k} > 2c^3 k - 1$$

$$> 4c^6 n - 1 > c^6 n$$

for $n > c^{-6}/3$; hence, from Theorem 1, $\mu_2 (\overline{G}) > c^6 n$.

Assume the assertion of the theorem holds for $r' < r$. Suppose $e (N_1) > c^3 k^2/3$; then, as $N_1 \subset \Gamma (u)$ is K_r-free, we have

$$\mu_2 (G) \geq \mu_2 (G [N_1]) > \gamma \left(\frac{c^3}{3}, r - 1 \right) k > 2c^3 \gamma \left(\frac{c^3}{3}, r - 1 \right) n,$$

if k is sufficiently large; thus, the assertion is proved if either $e (N_1) > c^3 k^2/3$ or $e (N_2) > c^3 k^2/3$. Assume now $e (N_1) \leq c^3 k^2/3$ and $e (N_2) \leq c^3 k^2/3$. Then, by applying Lemma 11 to the graph $G_1 = \overline{G} [N_1 \cup N_2]$, we see that if n is sufficiently large

$$\mu_2 (G_1) \geq k - 1 - 2c^3 k - \frac{c^3}{3} k - \frac{k^2 - e (N_1, N_2)}{k} \geq -c^3 k + 2c^3 k - 1 \geq c^6 n$$

and, since $\mu_2 (\overline{G}) \geq \mu_2 (G_1)$, our proof is completed.

We shall show that Theorem 10 follows from Theorem 12. Indeed Weyl’s inequality (e. g., see [10], p. 181) states that if A and B are two Hermitian matrices of order n then

$$\mu_2 (A) + \mu_n (B) \leq \mu_2 (A + B).$$

Given a K_r-free graph G of order n and size $m > cn^2$, let $A = A (\overline{G})$ and $B = A (G)$, so that

$$\mu_2 (\overline{G}) + \mu_n (G) \leq \mu_2 (K_n) = -1.$$

Since $e (\overline{G}) < n^2/2 - e (G) < (1/2 - c) n^2$, applying Theorem 12 to the graph \overline{G} we find that

$$\mu_n (B) \leq -1 - \gamma ((1/2 - c), r) n$$

for sufficiently large n, and Theorem 10 follows.

In [3] Chung, Graham and Wilson proved a theorem implying that if $G = G(n, m)$ is a graph with $e \geq cn^2$, $\mu_n (G) = o (n)$, and $\mu_2 (G) = o (n)$ then G contains a K_r if n is sufficiently large. Clearly, Theorem 10 and Theorem 12 strengthen this particular, yet important case of their theorem.
References

