The sum of degrees in cliques

Béla Bollobás*†† and Vladimir Nikiforov*

August 15, 2014

Abstract

For every graph G, let

$$\Delta_r(G) = \max \left\{ \sum_{u \in R} d(u) : R \text{ is an } r\text{-clique of } G \right\}$$

and let $\Delta_r(n,m)$ be the minimum of $\Delta_r(G)$ taken over all graphs of order n and size m. Write $t_r(n)$ for the size of the r-chromatic Turán graph of order n.

Improving earlier results of Edwards and Faudree, we show that for every $r \geq 2$, if $m \geq t_r(n)$, then

$$\Delta_r(n,m) \geq \frac{2rm}{n},$$

as conjectured by Bollobás and Erdős.

It is known that inequality (1) fails for $m < t_r(n)$. However, we show that for every $\varepsilon > 0$, there is $\delta > 0$ such that if $m > t_r(n) - \delta n^2$ then

$$\Delta_r(n,m) \geq (1 - \varepsilon) \frac{2rm}{n}.$$

1 Introduction

Our notation and terminology are standard (see, e.g., [1]): thus $G(n,m)$ stands for a graph of n vertices and m edges. For a graph G and a vertex $u \in V(G)$, we write $\Gamma(u)$ for the set of vertices adjacent to u and set $d_G(u) = |\Gamma(u)|$; we write $d(u)$ instead of $d_G(u)$ if the graph G is understood. However, somewhat unusually, for $U \subset V(G)$, we set $\Gamma(U) = \cap_{u \in U} \Gamma(u)$ and $\tilde{d}(U) = |\tilde{\Gamma}(U)|$.

We write $T_r(n)$ for the r-chromatic Turán graph on n vertices and $t_r(n)$ for the number of its edges.

*Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA
†Trinity College, Cambridge CB2 1TQ, UK
‡Research supported in part by DARPA grant F33615-01-C-1900.
For every $r \geq 2$ and every graph G, let $\Delta_r(G)$ be the maximum of the sum of degrees of the vertices of an r-clique, as in the abstract. If G has no r-cliques, we set $\Delta_r(G) = 0$. Furthermore, let

$$\Delta_r(n, m) = \min_{G = G(n, m)} \Delta_r(G).$$

Since $T_r(n)$ is a K_{r+1}-free graph, it follows that $\Delta_r(n, m) = 0$ for $m \leq t_{r-1}(n)$. In 1975 Bollobás and Erdős [2] conjectured that for every $r \geq 2$, if $m \geq t_r(n)$, then

$$\Delta_r(n, m) \geq \frac{2rm}{n}. \quad (2)$$

Edwards [3], [4] proved (2) under the weaker condition $m > (r - 1)n^2/2r$; he also proved that the conjecture holds for $2 \leq r \leq 8$ and $n \geq r^2$. Later Faudree [7] proved the conjecture for any $r \geq 2$ and $n > r^2(r - 1)/4$.

For $t_{r-1}(n) < m < t_r(n)$ the value of $\Delta_r(n, m)$ is essentially unknown even for $r = 3$ (see [5], [6] and [7] for partial results.) A construction due to Erdős and Faudree (see [7], Theorem 2) shows that, for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $t_{r-1}(n) < m < t_r(n) - \delta n^2$ then

$$\Delta_r(n, m) \leq (1 - \varepsilon) \frac{2rm}{n}.$$

The construction is determined by two appropriately chosen parameters a and d and represents a complete $(r - 1)$-partite graph with $(r - 2)$ chromatic classes of size a and a d-regular bipartite graph inserted in the last chromatic class.

In this note we prove a stronger form of (2) for every r and n. Furthermore, we prove that $\Delta_r(n, m)$ is “stable” as m approaches $t_r(n)$. More precisely, for every $\varepsilon > 0$, there is $\delta > 0$ such that if $m > t_r(n) - \delta n^2$ then

$$\Delta_r(n, m) \geq (1 - \varepsilon) \frac{2rm}{n}$$

for n sufficiently large.

1.1 Preliminary observations

If $M_1, ..., M_k$ are subsets of a (finite) set V then

$$|\cap_{i=1}^k M_i| \geq \sum_{i=1}^k |M_i| - (k - 1)|V|. \quad (3)$$

The size $t_r(n)$ of the Turán graph $T_r(n)$ is given by

$$t_r(n) = \frac{r - 1}{2r}n^2 - \frac{s}{2} \left(1 - \frac{s}{r}\right).$$

where s is the reminder of n modulo r. Hence,

$$\frac{r - 1}{2r}n^2 - \frac{r}{8} \leq t_r(n) \leq \frac{r - 1}{2r}n^2. \quad (4)$$
2 A greedy algorithm

In what follows we shall identify a clique with its vertex set.

Faudree [7] introduced the following algorithm \(P \) to construct a clique \(\{v_1, \ldots, v_k\} \) in a graph \(G \):

Step 1: \(v_1 \) is a vertex of maximum degree in \(G \);

Step 2: having selected \(v_1, \ldots, v_i \), if \(\Gamma (v_1, \ldots, v_i) = \emptyset \) then set \(k = i - 1 \) and stop \(P \), otherwise \(P \) selects a vertex of maximum degree \(v_i \in \Gamma (v_1, \ldots, v_{i-1}) \) and step 2 is repeated again.

Faudree’s main reason to introduce this algorithm was to prove Conjecture (2) for \(n \) sufficiently large, so he did not study \(P \) in great detail. In this section we shall establish some properties of \(P \) for their own sake. Later, in Section 3, we shall apply these results to prove an extension of (2) for every \(n \).

Note that \(P \) need not construct a unique sequence. Sequences that can be constructed by \(P \) are called \(P \)-sequences; the definition of \(P \) implies that \(\Gamma (v_1 \ldots v_k) = \emptyset \) for every \(P \)-sequence \(v_1, \ldots, v_k \).

Theorem 1 Let \(r \geq 2, n \geq r \) and \(m \geq t_r (n) \). Then every graph \(G = G(n, m) \) is such that:

(i) every \(P \)-sequence has at least \(r \) terms;

(ii) for every \(P \)-sequence \(v_1, \ldots, v_r, \ldots \)

\[
\sum_{i=1}^{r} d(v_i) \geq (r - 1) n;
\]

(iii) if equality holds in (5) for some \(P \)-sequence \(v_1, \ldots, v_r, \ldots \) then \(m = t_r (n) \).

Proof Without loss in generality we may assume that \(P \) constructs exactly the vertices \(1, \ldots, k \) and hence \(d(1) \geq \ldots \geq d(k) \).

Proof of (i) and (ii) To prove (i) we have to show that \(k \geq r \). For every \(i = 1, \ldots, k \), let \(M_i = \Gamma (i) \); clearly,

\[
\sum_{i=1}^{k} d(i) \leq (q - 1) n,
\]

since, otherwise, (3) implies that \(\Gamma (v_1 \ldots v_k) \neq \emptyset \), and so \(1, \ldots, k \) is not a \(P \)-sequence, contradicting the choice of \(k \). Suppose \(k < r \), and let \(q \) be the smallest integer such that the inequality

\[
\sum_{i=1}^{h} d(i) > (h - 1) n
\]

(6)
holds for \(h = 1, \ldots, q - 1 \), while
\[
\sum_{i=1}^{q} d(i) \leq (q - 1) n. \tag{7}
\]

Clearly, \(1 < q \leq k \).

Partition \(V = \bigcup_{i=1}^{q} V_i \), so that
\[
V_1 = V \setminus \Gamma(1),
\]
\[
V_i = \hat{\Gamma}([i-1]) \setminus \hat{\Gamma}([i]) \quad \text{for} \quad i = 2, \ldots, q - 1,
\]
\[
V_q = \hat{\Gamma}([q-1]).
\]

We have
\[
2m = \sum_{j \in V} d(j) = \sum_{h=1}^{q} \sum_{j \in V_h} d(j) \leq \sum_{i=1}^{q} d(i) |V_i|
\]
\[
= d(1) (n - d(1)) + \sum_{i=2}^{q-1} d(i) \left(\hat{d}([i]) - \hat{d}([i]) \right) + d(q) \hat{d}([q-1])
\]
\[
= d(1) n + \sum_{i=2}^{q-1} \hat{d}([i]) (d(i+1) - d(i)). \tag{8}
\]

For every \(i \in [q-1] \), set \(k_i = n - d(i) \) and let \(k_q = n - (k_1 + \ldots + k_{q-1}) \). Clearly, \(k_i > 0 \) for every \(i \in [q] \); also, \(k_1 + \ldots + k_q = n \).

Furthermore, for every \(h \in [q-2] \), applying (3) with \(M_i = \Gamma(i), i \in [h] \), and (6), we see that,
\[
\hat{d}([h]) = \left| \hat{\Gamma}([h]) \right| \geq \sum_{i=1}^{h} d(i) - (h - 1) n = n - \sum_{i=1}^{h} k_i > 0.
\]

Hence, by \(d(h+1) \leq d(h) \), it follows that
\[
\hat{d}([h]) (d(h+1) - d(h)) \leq \left(n - \sum_{i=1}^{h} k_i \right) (d(h+1) - d(h)). \tag{9}
\]

Since, from (7), we have
\[
d(q) \leq (q - 1) n - \sum_{i=1}^{q-1} d(i) = \sum_{i=1}^{q-1} k_i, \tag{10}
\]
in view of (9) with \(h = q - 1 \), it follows that
\[
\hat{d}([q-1]) (d(q) - d(q-1)) \leq \left(n - \sum_{i=1}^{q-1} k_i \right) (d(q) - d(q-1))
\]
\[
\leq \left(n - \sum_{i=1}^{q-1} k_i \right) \left(\sum_{i=1}^{q-1} k_i - d(q - 1) \right).
Recalling (8) and (9), this inequality implies that

\[2m \leq nd(1) + \sum_{h=1}^{q-2} \left(n - \sum_{i=1}^{h} k_i \right) \left(d (h + 1) - d (h) \right) + \left(n - \sum_{i=1}^{q-1} k_i \right) \left(\sum_{i=1}^{q-1} k_i - d(q - 1) \right). \]

Dividing by 2 and rearranging the right-hand side, we obtain

\[m \leq \left(n - \sum_{i=1}^{q-1} k_i \right) \left(\sum_{i=1}^{q-1} k_i \right) + \sum_{1 \leq i < j \leq q-1} k_i k_j = \sum_{1 \leq i < j \leq q} k_i k_j. \]

(11)

Note that

\[\sum_{1 \leq i < j \leq q} k_i k_j = e(K(k_1, ..., k_q)). \]

Given \(n \) and \(k_1 + \ldots + k_q = n \), the value \(e(K(k_1, ..., k_q)) \) attains its maximum if and only if all \(k_i \) differ by at most 1, that is to say, when \(K(k_1, ..., k_q) \) is exactly the Turán graph \(T_q(n) \). Hence, the inequality \(m \geq t_r(n) \) and (11) imply

\[t_r(n) \leq m \leq e(K(k_1, ..., k_q)) \leq t_q(n). \]

(12)

Since \(q < r \leq n \) implies \(t_q(n) < t_r(n) \), contradicting (12), the proof of (i) is complete.

To prove (ii) suppose (5) fails, i.e.,

\[\sum_{i=1}^{r} d(i) < (r - 1) n. \]

Hence, (10) holds with a strict inequality and so, the proof of (12) gives \(t_r(n) < t_r(n) \). This contradiction completes the proof of (ii).

Proof of (iii) Suppose that for some \(\mathcal{P} \)-sequence \(v_1, ..., v_r, ... \) equality holds in (5). We may and shall assume that \(v_1, ..., v_r = 1, ..., r \), i.e.,

\[\sum_{i=1}^{r} d(i) = (r - 1) n. \]

Following the arguments in the proof of (i) and (ii), from (12) we conclude that

\[t_r(n) \leq m \leq t_r(n). \]

and this completes the proof.

\[\square \]

3 Degree sums in cliques

In this section we turn to the problem of finding \(\Delta_\varepsilon(n,m) \) for \(m \geq t_r(n) \). We shall apply Theorem 1 to prove that every graph \(G = G(n,m) \) with \(m \geq t_r(n) \)
contains an r-clique R with
\[\sum_{i \in R} d(i) \geq \frac{2rm}{n}. \]
(13)

As proved by Faudree [7], the required r-clique R may be constructed by the algorithm \mathcal{P}. Note that the assertion is trivial for regular graphs; as we shall show, if G is not regular, we may demand strict inequality in (13).

Theorem 2 Let $r \geq 2$, $n \geq r$, $m \geq t_r(n)$ and let $G = G(n,m)$ be a graph which is not regular. Then there exists a \mathcal{P}-sequence v_1, \ldots, v_r, \ldots of at least r terms such that
\[\sum_{i=1}^{r} d(v_i) > \frac{2rm}{n}. \]

Proof Part (iii) of Theorem 1 implies that for some \mathcal{P}-sequence, say $1, \ldots, r, \ldots$, we have
\[\sum_{i=1}^{r} d(i) > (r - 1) n. \]

Since $d(i) < n$, we immediately obtain
\[\sum_{i=1}^{s} d(i) > (s - 1) n \]
(14)
for every $s \in [r]$.

The rest of the proof consists of two parts: In part (a) we find an upper bound for m in terms of $\sum_{i=1}^{r} d(i)$ and $\sum_{i=1}^{r} d^2(i)$. Then, in part (b), we prove that
\[\frac{1}{r} \sum_{i=1}^{r} d(i) \geq \frac{2m}{n}, \]
and show that if equality holds then G is regular.

(a) Partition the set V into r sets $V = V_1 \cup \ldots \cup V_r$, where,
\[
V_1 = V \setminus \Gamma(1),
V_i = \hat{\Gamma}([i - 1]) \setminus \hat{\Gamma}([i]) \text{ for } i = 2, ..., r - 1,
V_r = \hat{\Gamma}([r - 1]).
\]

We have,
\[
2m = \sum_{i \in V} d(i) = \sum_{i=1}^{r} \sum_{h \in V_h} d(j) \leq \sum_{i=1}^{r} d(i) |V_i|
= \sum_{i=1}^{r-1} (d(i) - d(r)) |V_i| + nd(r)
\]
(15)
Clearly, for every $i \in [r-1]$, from (3), we have

$$|\hat{\Gamma}([i+1])| \geq |\hat{\Gamma}([i])| + |\Gamma(i+1)| - n = |\hat{\Gamma}([i])| + d(i+1) - n$$

and hence, $|V_i| \leq n - d(i)$ holds for every $i \in [r-1]$. Estimating $|V_i|$ in (15) we obtain

$$2m \leq \sum_{i=1}^{r-1} (d(i) - d(r)) (n - d(i)) + nd(r)$$

$$= n \sum_{i=1}^{r} d(i) - \sum_{i=1}^{r} d^2(i) + d(r) \left(\sum_{i=1}^{r} d(i) - n (r - 1) \right).$$

(b) Let $S_r = \sum_{i=1}^{r} d(i)$. From $d(r) \leq S_r / r$ and Cauchy’s inequality we deduce

$$2m \leq nS_r - \sum_{i=1}^{r} d^2(i) + \frac{S_r}{r} (S_r - (r - 1)n)$$

$$\leq nS_r - \frac{1}{r} (S_r)^2 + \frac{S_r}{r} (S_r - (r - 1)n) \leq \frac{nS_r}{r},$$

and so,

$$\sum_{i=1}^{r} d(i) \geq \frac{2rm}{n}. \hspace{1cm} (16)$$

To complete the proof suppose we have an equality in (16). This implies that

$$\sum_{i=1}^{r} d^2(i) = \frac{1}{r} \left(\sum_{i=1}^{r} d(i) \right)^2$$

and so, $d(1) = ... = d(r)$. Therefore, the maximum degree $d(1)$ equals the average degree $2m/n$, contradicting the assumption that G is not regular. \qed

Since for every $m \geq t_r(n)$ there is a graph $G = G(n, m)$ whose degrees differ by at most 1, we obtain the following bounds on $\Delta_r(n, m)$.

Corollary 1 For every $m \geq t_r(n)$

$$\frac{2rm}{n} \leq \Delta_r(n, m) < \frac{2rm}{n} + r.$$

4 Stability of $\Delta_r(n, m)$ as m approaches $t_r(n)$

It is known that inequality (2) is far from being true if $m \leq t_r(n) - \varepsilon n$ for some $\varepsilon > 0$ (e.g., see [7]). However, it turns out that, as m approaches $t_r(n)$, the function $\Delta_r(n, m)$ approaches $2rm/n$. More precisely, the following stability result holds.
Theorem 3 For every $\varepsilon > 0$ there exist $n_0 = n_0(\varepsilon)$ and $\delta = \delta(\varepsilon) > 0$ such that if $m > t_r(n) - \delta n^2$ then
\[
\Delta_r(n, m) > (1 - \varepsilon) \frac{2rm}{n}
\]
for all $n > n_0$.

Proof Without loss of generality we may assume that
\[
0 < \varepsilon < \frac{2}{r(r + 1)}.
\]
Set
\[
\delta = \delta(\varepsilon) = \frac{1}{32} \varepsilon^2.
\]
If $m \geq t_r(n)$, the assertion follows from Theorem 2, hence we may assume that
\[
\frac{2rm}{n} < \frac{2rt_r(n)}{n} \leq (r - 1)n.
\]
Clearly, our theorem follows if we show that $m > t_r(n) - \delta n^2$ implies
\[
\Delta_r(n, m) > (1 - \varepsilon) (r - 1)n
\]
for n sufficiently large.
Suppose the graph $G = G(n, m)$ satisfies $m > t_r(n) - \delta n^2$. By (4), if n is large enough,
\[
m > t_r(n) - \delta n^2 > \left(\frac{r - 1}{2r} - \delta\right) n^2 - \frac{r}{8} \geq \left(\frac{r - 1}{2r} - 2\delta\right) n^2.
\]
Let $M_\varepsilon \subseteq V$ be defined as
\[
M_\varepsilon = \left\{ u : d(u) \leq \left(\frac{r - 1}{r} - \frac{\varepsilon}{2}\right) n \right\}.
\]
The rest of the proof consists of two parts. In part (a) we shall show that $|M_\varepsilon| < \varepsilon n$, and in part (b) we shall show that the subgraph induced by $V \setminus M_\varepsilon$ contains an r-clique with large degree sum, proving (17).

(a) Our first goal is to show that $|M_\varepsilon| < \varepsilon n$. Indeed, assume the opposite and select an arbitrary $M' \subseteq M_\varepsilon$ satisfying
\[
\left(\frac{1}{2} - \frac{1}{2\sqrt{2}}\right) \varepsilon n < |M'| < \left(\frac{1}{2} + \frac{1}{2\sqrt{2}}\right) \varepsilon n.
\]
Let G' be the subgraph of G induced by $V \setminus M'$. Then
\[
e(G) = e(G') + e(M', V \setminus M') + e(M') \leq e(G') + \sum_{u \in M'} d(u)
\]
\[
\leq e(G') + |M'| \left(\frac{r - 1}{r} - \frac{\varepsilon}{2}\right) n.
\]
Observe that second inequality of (19) implies
\[n - |M'| > (1 - \varepsilon) n. \]
Hence, if
\[e(G') \geq \frac{r - 1}{2r} (n - |M'|)^2 \]
then, applying Theorem 2 to the graph \(G' \), we see that
\[\Delta_r(G) \geq \Delta_r(G') \geq \frac{2re(G')}{n - |M'|} \geq (r - 1) (n - |M'|) > (r - 1) (1 - \varepsilon) n, \]
and (17) follows. Therefore, we may assume
\[e(G') < \frac{r - 1}{2r} (n - |M'|)^2. \]
Then, by (18) and (20),
\[\frac{r - 1}{2r} (n - |M'|)^2 > e(G') > -|M'| \left(\frac{r - 1}{r} - \varepsilon \right) n + \left(\frac{r - 1}{2r} - 2\delta \right) n^2. \]
Setting \(x = \frac{|M'|}{n} \), this shows that
\[\frac{r - 1}{2r} (1 - x)^2 + x \left(\frac{r - 1}{r} - \varepsilon \right) - \left(\frac{r - 1}{2r} - 2\delta \right) > 0, \]
which implies that
\[x^2 - \varepsilon x + 4\delta > 0. \]
Hence, either
\[|M'| > \left(\frac{\varepsilon - \sqrt{\varepsilon^2 - 16\delta}}{2} \right) n = \left(\frac{1}{2} - \frac{1}{2\sqrt{2}} \right) \varepsilon n \]
or
\[|M'| < \left(\frac{\varepsilon + \sqrt{\varepsilon^2 - 16\delta}}{2} \right) = \left(\frac{1}{2} + \frac{1}{2\sqrt{2}} \right) \varepsilon n, \]
contradicting (19). Therefore, \(|M_\varepsilon| < \varepsilon n \), as claimed.

(b) Let \(G_0 \) be the subgraph of \(G \) induced by \(V \setminus M_\varepsilon \). By the definition of \(M_\varepsilon \), if \(u \in V \setminus M_\varepsilon \), then
\[d_G(u) > \left(\frac{r - 1}{r} - \frac{\varepsilon}{2} \right) n, \]
and so
\[d_{G_0}(u) > \left(\frac{r - 1}{r} - \frac{\varepsilon}{2} \right) n - |M_\varepsilon| > \frac{r - 2}{r - 1} (n - |M_\varepsilon|). \]
Hence, by Turán’s theorem, \(G_0 \) contains an \(r \)-clique and, therefore,
\[\Delta_r(G) > r \left(\frac{r - 1}{r} - \frac{\varepsilon}{2} \right) n \geq (1 - \varepsilon) (r - 1) n, \]
proving (17) and completing the proof of our theorem. □

Acknowledgement. The authors are grateful to Prof. D. Todorov for pointing out a fallacy in an earlier version of the proof of Theorem 2 and to the referee for his valuable suggestions.

Added on July 1st, 2005. The results of this paper were first presented in a seminar at Memphis University in February, 2002 and also form part of the second author’s PhD thesis [10], Ch. 7. The results in Theorems 1 and 2 were reproduced by Khadzhiivanov and Nenov in [8], [9].

References

