A spectral Erdős-Stone-Bollobás theorem

Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152
e-mail: vnikifrv@memphis.edu
March 30, 2009

Abstract
Let $r \geq 3$ and $(c/r^r) \log n \geq 1$. If G is a graph of order n and its largest eigenvalue $\mu(G)$ satisfies

$$\mu(G) \geq (1 - 1/(r - 1) + c) n,$$

then G contains a complete r-partite subgraph with $r - 1$ parts of size $\lfloor (c/r^r)^r \log n \rfloor$ and one part of size greater than $n^{1-c^{-1}}$.

This result implies the Erdős-Stone-Bollobás theorem, the essential quantitative form of the Erdős-Stone theorem. Another easy consequence is that if F_1, F_2, \ldots are r-chromatic graphs satisfying $v(F_n) = o(\log n)$, then

$$\lim_{n \to \infty} \frac{1}{n} \max \{ \mu(G) : v(G) = n \text{ and } F_n \not\subseteq G \} = 1 - \frac{1}{r - 1}.$$

Keywords: largest eigenvalue; r-partite subgraph; Erdős-Stone-Bollobás theorem.

This note is part of an ongoing project aiming to build extremal graph theory on spectral basis. Here we give a spectral version of the Erdős-Stone theorem.

Given $r \geq 3$ and $c > 0$, let $g(n, r, c)$ be the maximum integer such that every graph with n vertices and $\lfloor (1 - 1/(r - 1) + c) n^2/2 \rfloor$ edges contains a complete r-partite graph with each part of size $g(n, r, c)$. The fundamental Erdős-Stone theorem [5] states that $g(n, r, c)$ tends to infinity with n. In [3] Bollobás and Erdős found that, in fact, $g(n, r, c) = \Theta(\log n)$. Below we give a spectral version of this result.

Our notation follows [2]; thus, $K_r(s_1, \ldots, s_r)$ denotes the complete r-partite graph with parts of sizes s_1, \ldots, s_r, and $\mu(G)$ stands for the spectral radius of the adjacency matrix of a graph G; log denotes the logarithm base e.

The main result of this note is the following theorem.

Theorem 1 Let $r \geq 3$, $(c/r^r)^r \log n \geq 1$, and let G be a graph with n vertices. If

$$\mu(G) \geq (1 - 1/(r - 1) + c) n,$$

then G contains a $K_r(s, \ldots, s, t)$ with $s \geq \lfloor (c/r^r)^r \log n \rfloor$ and $t > n^{1-c^{-1}}$.

1
We shall prove the following easy consequence of this result.

Corollary 2 Let \(r \geq 3 \) and let \(F_1, F_2, \ldots \) be \(r \)-chromatic graphs satisfying \(v(F_n) = o\left(\log n\right) \). Then

\[
\lim_{n \to \infty} \frac{1}{n} \max \{\mu(G) : v(G) = n \text{ and } F_n \not\subseteq G\} = 1 - \frac{1}{r-1} \tag{2}
\]

and

\[
\lim_{n \to \infty} \left(\frac{n}{2}\right)^{-1} \max \{e(G) : v(G) = n \text{ and } F_n \not\subseteq G\} = 1 - \frac{1}{r-1}. \tag{3}
\]

Before turning to the proofs of Theorem 1 and Corollary 2, some remarks seem in place.

1. The relation between \(c \) and \(n \) in Theorem 1 needs explanation. First, for fixed \(c \), it shows how large must be \(n \) so that the vertex classes of the required \(K_r(s, \ldots, s, t) \) are nonempty. But also \(c \) may depend on \(n \), e.g., letting \(c = 1/\log \log n \), the conclusion is meaningful for sufficiently large \(n \).

2. Note that, in Theorem 1, if condition (1) holds for some \(c \), the conclusion holds for every positive \(c' < c \) provided \(n \) is sufficiently large, i.e., as \(n \) grows, we can find a larger and more lopsided \(K_r(s, \ldots, s, t) \).

3. Since \(\mu(G) \geq 2e(G)/v(G) \), Theorem 1 implies the following form of the Erdős-Stone-Bollobás theorem:

Let \(r \geq 3 \), \((c/r^r)^r \log n \geq 1 \), and let \(G \) be a graph with \(n \) vertices. If

\[e(G) \geq \left(1 - 1/(r-1) + c\right)n^2/2, \]

then \(G \) contains a \(K_r(s, \ldots, s, t) \) with \(s \geq \lceil (c/r^r)^r \log n \rceil \) and \(t > n^{1-c^{-1}} \).

Other lower bounds on \(\mu(G) \), such as, e.g.,

\[\mu^2(G) \geq \frac{1}{n} \sum_{u \in V(G)} d^2(u), \]

imply other new versions of this theorem.

4. Suppose that \(c \) is a sufficiently small positive constant. Choosing randomly a graph \(G \) of order \(n \) with \(\lceil (1 - 1/(r-1) + c)n^2/2 \rceil \) edges, we have \(\mu(G) \geq (1 - 1/(r-1) + c)n \), but \(G \) contains no \(K_2(\lceil C \log n \rceil, \lceil C \log n \rceil) \) for some \(C > 0 \), independent of \(n \). Hence, for constant \(c \) Theorem 1 is best possible up to a constant factor.

5. In the context of the project mentioned in the introduction, Corollary 2 solves asymptotically the following general extremal problem:

Given a family \(\mathcal{F} \) of forbidden subgraphs with chromatic number at least 3, find the maximum spectral radius of a graph of order \(n \) containing no member of \(\mathcal{F} \).

We turn now to the proofs of Theorem 1 and Corollary 2.

Write \(k_r(G) \) for the number of \(r \)-cliques of a graph \(G \). Our proof of Theorem 1 is based on the following results.
Theorem 3 ([4], Theorem 2) If \(r \geq 2 \) and \(G \) is a graph of order \(n \), then
\[
k_{r+1}(G) \geq \left(\frac{\mu(G)}{n} - 1 + \frac{1}{r} \right) \frac{r (r-1)}{r+1} \left(\frac{n}{r} \right)^{r+1}.
\]

Theorem 4 ([7], Theorem 1) Let \(r \geq 2 \), \(\alpha^r \log n \geq 1 \), and let \(G \) be a graph of order \(n \). If \(k_r(G) \geq \alpha n^r \), then \(G \) contains a \(K_r(s, \ldots, s, t) \) with \(s = \lfloor \alpha^r \log n \rfloor \) and \(t > n^{1-\alpha r^{-1}} \).

Proof of Theorem 1 In view of \(\mu(G) \geq (1 - 1/(r-1) + c)n \), Theorem 3 implies that
\[
k_r(G) > c \frac{(r-1)(r-2)}{r} \left(\frac{n}{r-1} \right)^r > \frac{c}{r^r n^r}.
\]
Now, letting \(\alpha = c/r^r \), Theorem 4 implies that \(G \) contains a \(K_r(s, \ldots, s, t) \) with
\[
s \geq \lfloor \alpha^r \log n \rfloor = \lfloor (c/r^r)^r \log n \rfloor, \quad \text{and} \quad t > n^{1-\alpha r^{-1}} > n^{1-c^{-1}},
\]
completing the proof.

Proof of Corollary 2 Set \(c_n = r^r \left(v(F_n) / \log n \right)^{1/r} \) and let \(G \) be a graph of order \(n \) not containing \(F_n \). Then clearly \(G \) contains no \(K_r(s, \ldots, s) \) for \(s = v(F_n) \), and since
\[
(c_n/r^r)^r \log n = v(F_n) \geq 1.
\]
For \(n \) large enough, we have \(c_n < 1/2 \) and
\[
n^{1-c_n^{-1}} > (c_n/r^r)^r \log n = v(F_n),
\]
hence, Theorem 1 implies that
\[
\frac{\mu(G)}{n} \leq 1 - \frac{1}{r-1} + c_n.
\]
Thus, in view of
\[
\lim_{n \to \infty} c_n = \lim_{n \to \infty} r^r \left(\frac{v(F_n)}{\log n} \right)^{1/r} = r^r \left(\lim_{n \to \infty} \frac{v(F_n)}{\log n} \right)^{1/r} = 0,
\]
we obtain
\[
\limsup_{n \to \infty} \frac{1}{n} \max \left\{ \mu(G) : v(G) = n \text{ and } F_n \not\in G \right\} \leq 1 - \frac{1}{r-1}.
\]
On the other hand, writing \(T_s(n) \) for the \(s \)-partite Turán graph of order \(n \), we see that
\[
\frac{\mu(T_{r-1}(n))}{n} \geq \frac{\delta(T_{r-1}(n))}{n} \geq 1 - \frac{1}{r-1} - \frac{1}{n}.
\]
Since $T_{r-1}(n)$ is $(r - 1)$-partite, it contains no copy of F_n. Therefore,
\[
\liminf_{n \to \infty} \frac{1}{n} \max \{ \mu(G) : v(G) = n \text{ and } F_n \not\subseteq G \} \geq 1 - \frac{1}{r - 1},
\]
completing the proof of (2).

Now (3) follows since
\[
\left(\frac{n}{2} \right)^{-1} e(G) = \frac{2e(G)}{n(n-1)} \leq \frac{\mu(G)}{n-1} \leq \frac{\mu(G)}{n} + \frac{1}{n}
\]
and
\[
\left(\frac{n}{2} \right)^{-1} e(T_{r-1}(n)) \geq \left(\frac{n}{2} \right)^{-1} \frac{n\delta(T_{r-1}(n))}{2} = \frac{\delta(T_{r-1}(n))}{n-1} \geq 1 - \frac{1}{r - 1}.
\]

\[\square\]

Acknowledgement After this note had been made public, it became known that Babai and Guiduli [6] had proved a weaker form of Corollary 2 using the Szemerédi Regularity Lemma; for a recent account of this matter see [1].

Thanks are due to Felix Lazebnik for the motivation to write this note and to László Babai for useful suggestions.

References