Turán’s theorem inverted

Vladimir Nikiforov

Department of Mathematical Sciences, University of Memphis, Memphis TN 38152
e-mail: vnikifrv@memphis.edu

March 30, 2009

Abstract

In this note we solve an open problem of Erdős from 1963 strengthening the fundamental theorem of Turán in extremal graph theory.

Let $K^r_+(s_1, \ldots, s_r)$ be the complete r-partite graph with classes of size $s_1 \geq 2, s_2, \ldots, s_r$ with an edge added to the first class. Letting $t_r(n)$ be the number of edges of the r-partite Turán graph of order n, we prove that:

For all $r \geq 2$ and all sufficiently small $c > 0$, every graph of sufficiently large order n with $t_r(n) + 1$ edges contains a $K^r_+(\lfloor cn \ln n \rfloor, \ldots, \lfloor cn \ln n \rfloor, \lceil n^{1-\sqrt{c}} \rceil)$.

We also give a corresponding stability theorem and two supporting results of wider scope.

Keywords: clique; r-partite subgraph; stability, Turán’s theorem

1 Introduction

This note is part of an ongoing project aiming to improve some classical results in extremal graph theory, see, e.g., [3], [7, 10]. Here we complete an investigation started by Erdős in 1963.

Let $t_r(n)$ be the number of edges of the r-partite Turán graph of order n. The fundamental Turán theorem implies that every graph on n vertices with $t_r(n) + 1$ edges contains a K_{r+1}, the complete graph of order $r + 1$. Thus, it is natural to ask:

Which supergraphs of K_{r+1} are present in graphs on n vertices with $t_r(n) + 1$ edges?

Let $K^r_+(s_1, \ldots, s_r)$ be the complete r-partite graph with classes of size $s_1 \geq 2, s_2, \ldots, s_r$ with an edge added to the first class. An answer to the above question was stated by Erdős in [4] and proved in [6], Theorem 1:

Let $r \geq 2$ and $s \geq 2$. Then every graph of sufficiently large order n with $t_r(n) + 1$ edges contains a $K^r_+(s, \ldots, s)$.

For $r = 2$, Erdős [4] gave a stronger result:

For all sufficiently small $\varepsilon > 0$, every graph of sufficiently large order n with $t_2(n) + 1$ edges contains a $K^2_+(\lfloor cn \ln n \rfloor, \lfloor n^{1-\varepsilon} \rfloor)$ for some $c > 0$, independent of n.

1
Theorem 1 Let \(r \geq 2, \ 2/\ln n \leq c \leq r^{-(r+7)(r+1)}, \) and \(G \) be a graph of order \(n \). If \(G \) has \(t_r(n) + 1 \) edges, then \(G \) contains a \(K_{r}^{+}\left([c\ln n], \ldots, [c\ln n], \left[n^{1-\sqrt{c}}\right]\right) \).

For readers’ sake we present an immediate consequence of this assertion.

Corollary 2 Let \(r \geq 2, \ c = r^{-(r+7)(r+1)}, \ n \geq e^{2/c}, \) and \(G \) be a graph of order \(n \). If \(G \) has \(t_r(n) + 1 \) edges, then \(G \) contains a \(K_{r}^{+}\left([c\ln n], \ldots, [c\ln n]\right) \).

Both Theorem 1 and Corollary 2 generalize Turán’s theorem since \(K_{r}^{+}\left([c\ln n], \ldots, [c\ln n]\right) \) contains a \(K_{r+1} \). Moreover, just like the Turán theorem can be complemented by a stability theorem (see, e.g., [5], [8], and [11]), we have stability results corresponding to Theorem 1 and Corollary 2.

Theorem 3 Let
\[
r \geq 2, \quad 2/\ln n \leq c \leq r^{-(r+7)(r+1)/2}, \quad 0 < \alpha < r^{-8/8},
\]
and let \(G \) be a graph of order \(n \). If \(G \) has \(\lceil(1 - 1/r - \alpha)n^2/2\rceil \) edges, then one of the following statements holds:

(i) \(G \) contains a \(K_{r}^{+}\left([c\ln n], \ldots, [c\ln n], \left[n^{1-2\sqrt{c}}\right]\right) \);

(ii) \(G \) contains an induced \(r \)-partite subgraph \(G_0 \) of order at least \((1 - \sqrt{2\alpha})n \) and with minimum degree \(\delta(G_0) > (1 - 1/r - 2\sqrt{2\alpha})n \).

Here is a simplified version of Theorem 3, corresponding to Corollary 2:

Corollary 4 Let
\[
r \geq 2, \quad c = r^{-(r+7)(r+1)/2}, \quad 0 < \alpha < r^{-8/8}, \quad n \geq e^{2/c},
\]
and let \(G \) be a graph of order \(n \). If \(G \) has \(\lceil(1 - 1/r - \alpha)n^2/2\rceil \) edges, then one of the following statements holds:

(i) \(G \) contains a \(K_{r}^{+}\left([c\ln n], \ldots, [c\ln n]\right) \);

(ii) \(G \) contains an induced \(r \)-partite subgraph \(G_0 \) of order at least \((1 - \sqrt{2\alpha})n \) and with minimum degree \(\delta(G_0) > (1 - 1/r - 2\sqrt{2\alpha})n \).

In our proofs we use some tools developed elsewhere. However, a crucial role is played also by the following two versatile statements, which, in turn, may have applications outside of the present note.

Lemma 5 Let \(0 < \alpha \leq 1, \ 1 \leq c\ln n \leq \alpha m/2 + 1, \) and let \(F \) be a bipartite graph with parts \(A \) and \(B \) of size \(m \) and \(n \). If \(e(F) \geq \alpha mn \), then \(F \) contains a \(K_2(s,t) \) with parts \(S \subset A \) and \(T \subset B \) such that \(|S| = [c\ln n]\) and \(|T| = t > n^{1-c\ln \alpha/2}\).

Theorem 6 Let \(r \geq 2, \ 2/\ln n \leq c \leq r^{-(r+8)r}, \) and \(G \) be a graph \(G \) of order \(n \). If \(G \) contains a \(K_{r+1} \) and has minimum degree \(\delta(G) > (1 - 1/r - 1/r^4)n \), then \(G \) contains a
\[
K_{r}^{+}\left([c\ln n], \ldots, [c\ln n], \left[n^{1-\alpha^3}\right]\right).
\]
Remarks

- The relations between \(c \) and \(n \) in Theorems 1 and 3 need some explanation. First, for fixed \(c \), they show how large must be \(n \) to get valid conclusions. But, in fact, the relations are subtler, for \(c \) itself may depend on \(n \), e.g., letting \(c = 1/\ln \ln n \), the conclusions are meaningful for sufficiently large \(n \).

- Note that, in Theorems 1 and 3, if the conclusion holds for some \(c \), it holds also for \(0 < c' < c \), provided \(n \) is sufficiently large. This implies the results of Erdős mentioned above.

- The stability conditions in Theorem 3 and Corollary 4 are stronger than the conditions in the stability theorems of [5], [8], and [11]. Indeed, condition (ii) implies that \(G_0 \) is an induced, almost balanced, and almost complete \(r \)-partite graph containing almost all the vertices of \(G \);

- The exponents \(1 - \sqrt{c} \) and \(1 - 2\sqrt{c} \) in Theorems 1 and 3 are far from the best ones, but are simple.

The next section contains notation and results needed to prove the theorems. The proofs are presented in Section 3.

2 Preliminary results

Our notation follows [2]; thus, given a graph \(G \), we write:

- \(V(G) \) for the vertex set of \(G \) and \(|G| \) for \(|V(G)| \);
- \(E(G) \) for the edge set of \(G \) and \(e(G) \) for \(|E(G)| \);
- \(\Gamma(u) \) for the set of neighbors of a vertex \(u \) and \(d(u) \) for \(|\Gamma(u)| \);
- \(\delta(G) \) for the minimum degree of \(G \);
- \(G[U] \) for the subgraph of \(G \) induced by a set \(U \subset V(G) \);
- \(H + u \) for \(G[V(H) \cup \{u\}] \), where \(H \subset G \) is a subgraph and \(u \in V(G) \);
- \(K_r(G) \) for the set of \(r \)-cliques of \(G \) and \(k_r(G) \) for \(|K_r(G)| \);
- \(K_s(M) \) for the set of \(s \)-cliques contained in members of a set \(M \subset K_r(G) \);
- \(K_r(s_1, \ldots, s_r) \) for the complete \(r \)-partite graph with parts of size \(s_1, \ldots, s_r \).

An \(r \)-joint of size \(t \) is the union of \(t \) distinct \(r \)-cliques sharing an edge. Write \(js_r(G) \) for the maximum size of an \(r \)-joint in \(G \).

Given a set \(M \subset K_r(G) \) and a subgraph \(H \subset G \) such that \(H = K_r(s_1, \ldots, s_r) \), we say that \(M \) covers \(H \) if \(E(H) \subset K_2(M) \) and \(H \) contains \(\min\{s_1, \ldots, s_r\} \) disjoint members of \(M \).

For our proofs we need the following facts, all obtained recently as tools for the project mentioned in the introduction.

Fact 7 ([3], Lemma 1) Let \(r \geq 2 \) and \(c \geq 0 \), and \(G \) be a graph of order \(n \). If

\[
e(G) > (1 - 1/r + c) n^2/2,
\]
then

\[k_{r+1}(G) > c \left(\frac{r^2}{r+1} \left(\frac{n}{r} \right)^{r+1} \right). \]

\[\square \]

Fact 8 ([3], Lemma 6) Let \(r \geq 2 \), and \(G \) be a graph of order \(n \). If \(G \) contains a \(K_{r+1} \) and \(\delta(G) > (1 - 1/r - 1/r^4)n \), then \(j_{s_{r+1}}(G) > n^{r-1/r + 3} \).

\[\square \]

Fact 9 ([3], Theorem 7) Let \(r \geq 2 \), \(n > r^8 \), and \(G \) be a graph of order \(n \). If \(e(G) > t_r(n) \), then \(G \) has an induced subgraph \(G' \) of order \(n' > (1 - 1/r - 1/r^4)n \) such that either

\[e(G') > \left(\frac{r - 1}{2r} + \frac{1}{r^4(r^2 - 1)} \right)(n')^2 \tag{1} \]

or

\[K_{r+1} \subset G', \quad \text{and} \quad \delta(G') > (1 - 1/r - 1/r^4)n'. \tag{2} \]

\[\square \]

Fact 10 ([7], Theorem 1) Let \(r \geq 2 \), \(\alpha r \ln n \geq 1 \), and \(G \) be a graph of order \(n \). Every set \(M \subset K_r(G) \) satisfying \(|M| \geq \alpha n \) covers a \(K_r(s, \ldots, s, t) \) with \(s = \lfloor \alpha r \ln n \rfloor \) and \(t > n^{1 - \alpha r^{-1}} \).

\[\square \]

3 Proofs

Proof of Lemma 5 Set \(s = \lfloor c \ln n \rfloor \) and let

\[t = \max \{ x : \text{there exists } K_2(s, x) \subset F \text{ with part of size } s \text{ in } A \}. \]

Thus \(d(X) \leq t \) for each \(X \subset A \) with \(|X| = s \), and so,

\[t \binom{m}{s} \geq \sum_{X \subset A, |X| = s} d(X) = \sum_{u \in B} \binom{d(u)}{s}. \tag{3} \]

Setting

\[f(x) = \begin{cases} \binom{x}{s} & \text{if } x \geq s - 1 \\ 0 & \text{if } x < s - 1, \end{cases} \]

and noting that \(f(x) \) is a convex function, we find that,

\[\sum_{u \in B} \binom{d(u)}{s} = \sum_{u \in B} f(d(u)) \geq nf \left(\frac{1}{n} \sum_{u \in B} d(u) \right) = n \binom{e(F)/n}{s} \geq n \binom{\alpha m}{s}. \]

Combining this inequality with (3) and rearranging, we find that

\[t \geq n \alpha m (am - 1) \ldots (am - s) \ldots (m - s + 1) > n \left(\frac{am - s + 1}{m} \right)^s \geq n \left(\frac{\alpha}{2} \right)^s \geq n^{1+c \ln(\alpha/2)}, \]

4
completing the proof.

\[\square \]

Proof of Theorem 6 Let \(r, c, n, \) and the graph \(G \) satisfy the conditions of the theorem. Note first that for every \(R \in K_{r-1}(G) \),

\[
d(R) = \left| \bigcap_{u \in R} \Gamma(u) \right| \geq \sum_{u \in R} d(u) - (r - 2) n \geq (r - 1) \delta(G) - (r - 2) n > \frac{n}{r^2}.
\]

Thus, there exists an edge \(uv \) implying that \(|Y| - |\Gamma(u) \cap \Gamma(v) \cap V(G)| \). We claim that there exists \(k_{r-1}(G[B]) > n^{r-1}/r^{r+4} \).

Define the set \(X \) as

\[
X = \{ R : R \in K_r(G) \text{ and } |R \cap B| \geq r - 1 \}.
\]

In view of (4) and (5), we find that

\[
|X| \geq \frac{1}{r} \sum_{P \in K_{r-1}(G[B])} d(P) > \frac{1}{r} \times \frac{n}{r^2} \times \frac{n^{r-1}}{r^{r+4}} = \frac{n^r}{r^{r+7}}.
\]

For a set \(N \subseteq K_r(G) \) and a clique \(R \in K_{r-1}(N) \) let \(d_N(R) \) be the number of members of \(N \) containing \(R \). We claim that there exists \(Y \subseteq X \) with \(|Y| > n^r/r^{r+8} \) such that \(d_Y(R) > n/r^{r+8} \) for all \(R \in K_{r-1}(Y) \). Indeed, set \(Y = X \) and apply the following procedure:

While there exists an \(R \in K_{r-1}(Y) \) with \(d_Y(R) \leq n/r^{r+8} \) **do**

Remove from \(Y \) all \(r \)-cliques containing \(R \).

When the procedure stops, \(d_Y(R) > n/r^{r+8} \) for all \(R \in K_{r-1}(Y) \), and

\[
|X| - |Y| \leq |K_{r-1}(X)| \frac{n}{r^{r+8}} \leq \left(\frac{n}{r^2} \right) \frac{n^{r-1}}{r^{r+8}} < \frac{1}{r^{r+7}} n^r,
\]

implying that \(|Y| > n^r/r^{r+8} \), as claimed.

Since

\[
|K_{r-1}(Y)| \geq r |Y| / n > r \times r^{-r-8} n^r / n = n^{r-1}/r^{r+7},
\]

by Fact 10, \(K_{r-1}(Y) \) covers a subgraph \(H = K_{r-1}(m, \ldots, m) \) with \(m = \left\lfloor r^{-(r+7)(r-1)} \ln n \right\rfloor. \)

Select a set \(A \) of \(m \) disjoint \((r-1)\)-cliques in \(H \) that are members of \(K_{r-1}(Y) \) and define a bipartite graph \(F \) with parts \(A \) and \(B \), joining \(R \in A \) to \(v \in B \) if \(R + v \in Y \).
Let $\alpha = 1/r^{r+8}$ and set $s = \lfloor c \ln n \rfloor$. Since

$$dy(R) > \frac{1}{r^{r+8}} n \geq \alpha n$$

for all $R \in K_{r-1}(Y)$, we have $e(F) > \alpha mn$. Also, we find that

$$s \leq c \ln n \leq \frac{1}{r^{r+8}} r \ln n \leq \frac{1}{2r^{r+8}} \times \frac{1}{r(r+7)(r-1)} \ln n \leq \frac{\alpha}{2} m + 1.$$

Hence, by Fact 5, H contains a $K_2(s, t)$ with parts $S \subset A$ and $T \subset B$ such that $|S| = s$ and $|T| = t > n^{1-c \ln \alpha/2}$. A routine calculation shows that for $r \geq 2$,

$$\ln \alpha/2 = \ln \frac{1}{2r^{r+8}} \geq -r^3,$$

and so, $t > n^{1-cr^3}$.

Letting H^* be the subgraph of H induced by the union of the members of S, we see that $H^* = K_{r-1}(s, \ldots, s)$. Since $R + v \in Y$ for all $v \in T$ and $R \in K_{r-1}(H^*)$, we see that Y covers a $K_r(s, \ldots, s, t)$. Note that at least $(r - 2)$ of the parts of H^* belong to B, for otherwise we can select an $(r - 1)$-clique Q in H^* with two vertices outside B, and so, every $R \in Y$ containing Q has two vertices outside B. This is a contradiction since $Y \subseteq X$ and all members of X intersect B in at least $r - 1$ vertices.

Let H_1, \ldots, H_{r-1} be the parts of H^*, and assume by symmetry that $H_i \subset B$ for $i = 2, \ldots, r - 1$. Remove two vertices from H_1, add u and v to H_1, and write H_1' for the resulting set. Clearly the sets $H_1', H_2, \ldots, H_{r-1}, T$ induce a subgraph containing a $K_r^+(\lfloor c \ln n \rfloor, \ldots, \lfloor c \ln n \rfloor, \lceil n^{1-cr^3} \rceil)$, completing the proof.

Proof of Theorem 1 Let G be a graph of order n with $t_r(n) + 1$ edges. Fact 9 implies that there exists an induced subgraph $G' \subset G$ of order $n' > (1 - 1/r^2)n$ such that either (1) or (2) holds.

Assume first that G' satisfies condition (1). Fact 7 implies that

$$k_{r+1}(G) \geq k_{r+1}(G') \geq \frac{2}{r^4(r^2 - 1)} \times \frac{r^2}{r + 1} \times \binom{n'}{r}^{r+1}$$

$$> \frac{2}{r^2(r^2 - 1)(r + 1)} \times \left(1 - \frac{1}{r^2}\right)^{r+1} \times \binom{n}{r}^{r+1}$$

$$> \frac{2}{r^2(r^2 - 1)(r + 1)} \times \left(1 - \frac{r + 1}{r^2}\right) \times \binom{n}{r}^{r+1}$$

$$> \frac{2(r^2 - r - 1)}{r^4(r^2 - 1)(r + 1)} \times \left(\binom{n}{r}^{r+1} > \frac{1}{r^{r+7}} n^{r+1} > c^{1/(r+1)} n^{r+1}.\right.$$}

Hence, by Fact 10, G contains a $K_{r+1}(s, \ldots, s, t)$ with $s = \lfloor c \ln n \rfloor$ and

$$t > n^{1-c^{r/(r+1)}} > n^{1-c^{r}}.$$
Then, obviously, \(G \) contains a \(K_r^+ \left(\left[c \ln n \right], \ldots, \left[c \ln n \right], \left[n^{1-\sqrt{c}} \right] \right) \), completing the proof.

Finally, assume that \(G' \) satisfies condition (2). Applying Theorem 6, we see that \(G' \) contains a

\[
K_r^+ \left(\left[2c \ln n' \right], \ldots, \left[2c \ln n' \right], \left(n' \right)^{1-2cr^3} \right).
\]

To complete the proof, note that

\[
2c \ln n' \geq 2c \ln \left(1 - \frac{1}{r^2} \right) n \geq 2 \ln \left(1 - \frac{1}{r^2} \right) + 2 \ln n \geq c \ln n
\]

and

\[
(n')^{1-2cr^3} \geq \left(1 - \frac{1}{r^2} \right)^{1-2cr^3} n^{1-2cr^3} \geq \left(1 - \frac{1}{r^2} \right) n^{1-2cr^3} > n^{1-\sqrt{c}}.
\]

\[\square\]

Proof of Theorem 3 Let \(G \) be a graph of order \(n \) with \(e(G) > (1 - 1/r - \alpha) n^2/2 \). Set \(V = V(G), \varepsilon = \sqrt{2\alpha} \), and define the set \(M_\varepsilon \) as

\[
M_\varepsilon = \{ u \in V(G) : d(u) \leq (1 - 1/r - \varepsilon) n \}.
\]

Assume that condition (i) fails. We shall show that: (a) \(|M_\varepsilon| < \varepsilon n \); (b) the graph \(G_0 = G[V \setminus M_\varepsilon] \) satisfies condition (ii).

(a) The set \(M_\varepsilon \) satisfies \(|M_\varepsilon| < \varepsilon n \)

Assume for a contradiction that \(|M_\varepsilon| \geq \varepsilon n \), select \(M' \subset M_\varepsilon \) with

\[
|M'| = \lceil \varepsilon n \rceil
\]

and note that \(M' \) is nonempty since \(\varepsilon n = \sqrt{2\alpha} n > 1 \). Letting \(G' = G[V \setminus M'] \), we see that

\[
e(G) = e(G') + e(M', V \setminus M') + e(M') \leq e(G') + \sum_{u \in M'} d(u)
\]

\[
\leq e(G') + |M'| (1 - 1/r - \varepsilon) n.
\]

Assume for a contradiction that

\[
e(G') > \frac{r-1}{2r} \left(n - |M'| \right)^2
\]

and set \(p = n - |M'| \). In view of (6), we have

\[
p \geq n - \varepsilon n = \left(1 - \sqrt{2\alpha} \right) n.
\]
Hence, by Theorem 1, G contains a $K^+_{r'} \left(\lfloor 2c \ln p \rfloor, \ldots, \lfloor 2c \ln p \rfloor, \left[p^{1-\sqrt{2c}} \right] \right)$. Since
\[2c \ln p \geq 2c \ln \left(1 - \sqrt{2\alpha} \right) n \geq 2c \ln \left(1 - \frac{1}{4r^4} \right) n \geq c \ln n \]
and
\[p^{1-\sqrt{2c}} \geq \left(1 - \sqrt{2\alpha} \right)^{1-\sqrt{2c}} n^{1-\sqrt{2c}} > \left(1 - \sqrt{2\alpha} \right)n^{1-\sqrt{2c}} > n^{1-2\sqrt{c}}, \]
this contradicts the assumption that (i) fails.

Hereafter, we assume that
\[e (G') \leq \frac{r - 1}{2r} (n - |M'|)^2. \]

From
\[e (G') \geq e (G) - \sum_{u \in M} d (u) \geq (1 - 1/r - \alpha) n^2/2 - |M'| (1 - 1/r - \varepsilon) n, \]
we obtain
\[\frac{r - 1}{2r} (n - |M'|)^2 \geq \left(\frac{r - 1}{r} - \alpha \right) \frac{n^2}{2} - |M'| \left(\frac{r - 1}{r} - \varepsilon \right) n. \]

After some algebra, we find that
\[|M'| < \left(\varepsilon - \sqrt{\varepsilon^2 - \alpha} \right) n = \varepsilon \left(1 - \sqrt{1/2} \right) n \]
or
\[|M'| > \left(\varepsilon + \sqrt{\varepsilon^2 - \alpha} \right) n = \varepsilon \left(1 + \sqrt{1/2} \right) n, \]
contradicting (6) in view of $\varepsilon \sqrt{1/2} n = \sqrt{2\alpha n} > \sqrt{2}$. Therefore, $|M_e| < \varepsilon n$.

(b) The graph $G_0 = G [V \setminus M_e]$ satisfies condition (ii).

By our choice of M_e, for every $u \in V \setminus M_e$ we have $d (u) > (1 - 1/r - \varepsilon) n$; thus
\[\delta (G_0) > (1 - 1/r - \varepsilon) n - |M_e| > (1 - 1/r - 2\varepsilon) n = \left(1 - 1/r - 2\sqrt{2\alpha} \right) n, \]
and so, $\delta (G_0)$ satisfies the required condition. All that remains to prove is that G_0 is r-partite.

If G_0 contains a K_{r+1}, in view of
\[\delta (G_0) > \left(1 - 1/r - 2\sqrt{2\alpha} \right) n > \left(1 - 1/r - 1/r^4 \right) n, \]
using Theorem 6 as in the proof of Theorem 1, we see that G contains a
\[K^+_{r'} \left(\lfloor c \ln n \rfloor, \ldots, \lfloor c \ln n \rfloor, \left[n^{1-\sqrt{c}} \right] \right), \]
contradicting our assumption. Thus, G_0 is K_{r+1}-free. In view of
\[\delta (G_0) > \left(1 - 1/r - 1/r^4 \right) n > \left(1 - \frac{3}{3r - 1} \right) |G_0|, \]
the theorem of Andrásfai, Erdős and Sós [1] implies that G_0 is r-partite, completing the proof. \]

We omit the proofs of Corollaries 2 and 4, since they are easy consequences of Theorem 1 and 3.
Acknowledgement Thanks the referee for careful reading and useful remarks.

References

