Complete \(r \)-partite subgraphs of dense \(r \)-graphs

Vladimir Nikiforov

Department of Mathematical Sciences, University of Memphis, Memphis TN 38152

March 30, 2009

Abstract

Extending a classical result of Erdős, we derive the following concise statement:

Let \(r \geq 3 \) and \((\ln n)^{-1/(r-1)} \leq \alpha \leq r^{-3} \). Then every \(r \)-uniform graph on \(n \) vertices with at least \(\alpha n^r / r! \) edges contains a complete \(r \)-partite subgraph with \(r - 1 \) classes of size \(\left\lfloor \alpha (\ln n)^{1/(r-1)} \right\rfloor \) and one class of size \(\left\lfloor n^{1-\alpha^{r-2}} \right\rfloor \).

Our main result is a similar, but stronger statement about directed hypergraphs.

Keywords: directed hypergraph; number of edges; complete multipartite subgraph.

In this note graph means \(r \)-uniform hypergraph for some fixed \(r \geq 3 \).

Given \(c > 0 \), how large complete \(r \)-partite subgraphs must contain a graph with \(n \) vertices and \(cn^r \) edges? As shown by Erdős and Stone [1] and Erdős [2], such a graph contains a complete \(r \)-partite subgraph with each class of size \(a (\log n)^{1/(r-1)} \) for some \(a = a(c) > 0 \), independent of \(n \).

In this note we extend this fundamental result in three directions: \(c \) may be a function of \(n \), the complete \(r \)-partite subgraph may have vertex classes of variable size, and graphs may be directed.

Letting \(K_r(s_1, \ldots, s_r) \) be the complete \(r \)-partite graph with vertex classes of size \(s_1, \ldots, s_r \), we prove the following

Theorem 1 Let \(r \geq 3 \), \((\ln n)^{-1/(r-1)} \leq \alpha \leq r^{-3} \), and the positive integers \(s_1, \ldots, s_{r-1} \) satisfy \(s_1 s_2 \cdots s_{r-1} \leq \alpha^{r-1} \ln n \). Then every graph with \(n \) vertices and at least \(\alpha n^r / r! \) edges contains a \(K_r(s_1, \ldots, s_{r-1}, t) \) with \(t > n^{1-\alpha^{r-2}} \).

It turns out that it is easier to prove Theorem 1 in a more general setup, viz., for directed \(r \)-graphs. Thus our principal statement is the following
Theorem 2 Let \(r \geq 3, (\ln n)^{-1/(r-1)} \leq \alpha \leq r^{-3} \), and the positive integers \(s_1, \ldots, s_{r-1} \) satisfy \(s_1 s_2 \cdots s_{r-1} \leq \alpha^{r-1} \ln n \). Let \(U_1, \ldots, U_r \) be sets of size \(n \) and \(M \subseteq U_1 \times \cdots \times U_r \) satisfy \(|M| \geq \alpha n^r \). Then there exist \(V_1 \subseteq U_1, \ldots, V_r \subseteq U_r \) satisfying \(V_1 \times \cdots \times V_r \subseteq M \) and

\[
|V_1| = s_1, \ldots, |V_{r-1}| = s_{r-1}, \quad |V_r| > n^{1-\alpha^{r-2}}.
\]

We prove Theorem 2 by an involved counting argument. For a better view on the matter we give a separate theorem, hoping that it may have other applications as well.

Let \(U_1, \ldots, U_r \) be nonempty sets and \(M \subseteq U_1 \times \cdots \times U_r \). Let the positive integers \(s_1, \ldots, s_r \) satisfy \(|U_i| \geq s_i \) \((1 \leq i \leq r)\). Write \(B_M (s_1, \ldots, s_r) \) for the set of products \(V_1 \times \cdots \times V_r \subseteq M \) such that \(V_i \subseteq U_i \) and \(|V_i| = s_i \) for \(i = 1, \ldots, r \).

Theorem 3 Let \(r \geq 2 \), let \(U_1, \ldots, U_r \) be sets of size \(n \) and \(M \subseteq U_1 \times \cdots \times U_r \) satisfy \(|M| \geq \alpha n^r \). If

\[
2^r \exp \left(-\frac{1}{r} (\ln n)^{1/r} \right) \leq \alpha \leq 1
\]

and the positive integers \(s_1, s_2, \ldots, s_r \) satisfy \(s_1 s_2 \cdots s_r \leq \ln n \), then

\[
|B_M (s_1, \ldots, s_r)| \geq \left(\frac{\alpha}{2^r} \right)^{s_1 \cdots s_r} \left(\frac{n}{s_1} \right) \cdots \left(\frac{n}{s_r} \right).
\]

Remarks

- The relations between \(\alpha \) and \(n \) in the above theorems need some explanation. First, for fixed \(\alpha \), they show how large must be \(n \) to get valid conclusions. But, in fact, the relations are subtler, for \(\alpha \) itself may depend on \(n \), e.g., letting \(\alpha = 1/\ln \ln n \), the conclusions are meaningful for sufficiently large \(n \).

- Note that, in Theorems 1 and 2, if the conclusion holds for some \(\alpha \), it holds also for \(0 < \alpha' < \alpha \), provided \(n \) is sufficiently large.

- As Erdős showed in [2], most graphs with \(n \) vertices and \((1 - \varepsilon) \binom{n}{2} \) edges have no \(K_r (s, \ldots, s) \) for \(s \geq c (\log n)^{1/(r-1)} \) and sufficiently large constant \(c = c(\varepsilon) \), independent of \(n \). Hence, Theorems 1 and 2 are essentially best possible at least for fixed \(\alpha \). On the other hand, in Theorem 2, we cannot determine how large the set \(V_r \) can be, even for \(r = 3 \).

- Finally, observe that for \(r = 2 \) the relations are different, e.g., the equivalent of Theorem 2 is the following version of Lemma 2 in [3]:

2
Let \((\ln n)^{-1/2} \leq \alpha < 1/2\), and let \(G\) be a bipartite 2-graph with parts of size \(n\) with at least \(\alpha n^2\) edges. Then \(G\) contains a \(K_2(s,t)\) with \(s = [\alpha^2 \ln n]\) and \(t > n^{1-\alpha}\).

Proofs

Let us start with some definitions.

Suppose that \(U_1, \ldots, U_r\) are nonempty sets and \(M \subset U_1 \times \cdots \times U_r\); let the integers \(s_1, \ldots, s_r\) satisfy \(0 < s_i \leq |U_i|\), for \(i = 1, \ldots, r\).

Define \(M' \subset U_1 \times \cdots \times U_{r-1}\) as

\[
M' = \{(u_1, \ldots, u_{r-1}) : \text{there exists } u \in U_r \text{ such that } (u_1, \ldots, u_{r-1}, u) \in M\}.
\]

For every \(R \in B_{M'}(s_1, \ldots, s_{r-1})\), let

\[
N_M(R) = \{u : u \in U_r \text{ and } (u_1, \ldots, u_{r-1}, u) \in M \text{ for every } (u_1, \ldots, u_{r-1}) \in R\},
\]

\[
d_M(R) = |N_M(R)|.
\]

For every \(v \in U_r\), let

\[
N_M(v) = \{(u_1, \ldots, u_{r-1}) : (u_1, \ldots, u_{r-1}, v) \in M\},
\]

\[
d_M(v) = |N_M(v)|,
\]

\[
D_M(v) = |\{R : R \in B_{M'}(s_1, \ldots, s_{r-1}) \text{ and } v \in N_M(R)\}|.
\]

Finally, for every integer \(s \geq 1\), let

\[
g_s(x) = \begin{cases}
\binom{x}{s} & \text{if } x > s - 1; \\
0 & \text{if } x \leq s - 1.
\end{cases}
\]

Proof of Theorem 3 By symmetry we assume that \(s_1 \geq s_2 \geq \cdots \geq s_r\). To prove the assertion we use induction on \(r\). Let first \(r = 2\). Since \(g_{s_2}(x)\) is convex, we see that

\[
|B_M(s_1, s_2)| = \sum_{R \subset U_1, |R| = s_1} \binom{d_M(R)}{s_2} = \sum_{R \subset U_1, |R| = s_1} g_{s_2}(d_M(R)) \geq \binom{n}{s_1} g_{s_2} \left(\binom{n}{s_1}^{-1} \sum_{R \subset U_1, |R| = s_1} d_M(R) \right).
\]

On the other hand, using the convexity of \(g_{s_1}(x)\), we find that

\[
\sum_{R \subset U_1, |R| = s_1} d_M(R) = \sum_{u \in U_2} \binom{d_M(u)}{s_1} = \sum_{u \in U_2} g_{s_1}(d_M(u)) \geq n g_{s_1} \left(\frac{1}{n} \sum_{u \in U_2} d_M(u) \right) \geq n \binom{|M|/n}{s_1} \geq n \left(\frac{\alpha n}{s_1} \right).
\]
By the assumption,
\[\alpha n \geq 4 \exp \left(\ln n - \frac{1}{2} (\ln n)^{1/2} \right) > 2 \exp \left(\frac{1}{2} \ln n \right) \geq 2 \ln n \geq 2s_1. \]

Therefore,
\[n \left(\frac{\alpha n}{s_1} \right) \geq n \left(\frac{\alpha}{2} \right)^{s_1} \left(\frac{n}{s_1} \right), \]
and, since \(g_{s_2}(x) \) is non-decreasing, we obtain
\[|B_M(s_1, s_2)| \geq \left(\frac{n}{s_1} \right)^{g_{s_2}} \left(n \left(\frac{n}{s_1} \right)^{-1} \left(\alpha n \right) \right) \geq \left(\frac{n}{s_1} \right)^{g_{s_2}} \left(\left(\frac{\alpha}{2} \right)^{s_1} n \right). \]

Likewise, from
\[-\frac{1}{2} (\ln n)^{1/2} \leq \ln \frac{\alpha}{4} \leq \ln \frac{1}{4}, \]
we see that \(n \geq e^{(\ln 16)^2} \), and so,
\[(\alpha/2)^{s_1} n \geq (\alpha/2)^{\ln n} n = n^{1+\ln \alpha/2} \geq n^{0.3} \geq 2\sqrt{\ln n} \geq 2s_2. \]

This inequality implies that
\[|B_M(s_1, s_2)| \geq \left(\frac{n}{s_1} \right)^{g_{s_2}} \left(n \left(\frac{n}{s_1} \right)^{-1} \left(\alpha n \right) \right) \geq \left(\frac{n}{s_1} \right)^{g_{s_2}} \left(\left(\frac{\alpha}{2} \right)^{s_1} n \right), \]
completing the proof for \(r = 2 \).

Assume now the assertion true for \(r - 1 \); we shall prove it for \(r \). We first show that there exist \(W \subset U_r \) and
\[L \subset M \cap (U_1 \times \cdots \times U_{r-1} \times W) \]
with \(|L| > (\alpha/2)n^r\) such that \(d_L(u) \geq (\alpha/2)n^{r-1} \) for all \(u \in W \). Indeed, apply the following procedure:

Let \(W = U_r, L = M; \)

While there exists an \(u \in W \) with \(d_L(u) < (\alpha/2)n^{r-1} \) **do**

Remove \(u \) **from** \(W \). **Remove all** \(r \)-**tuples containing** \(u \) **from** \(L \).
When this procedure stops, we have \(d_L(u) \geq (\alpha/2) n^{r-1} \) for all \(u \in W \). In addition,

\[
|M| - |L| < (\alpha/2) n^{r-1} n \leq (\alpha/2) n^r,
\]

implying that \(|L| \geq (\alpha/2) n^r\), as claimed.

Since \(g_s(x) \) is convex, we see that

\[
|B_L(s_1, \ldots, s_r)| \geq \sum_{R \in B_L(s_1, \ldots, s_r-1)} \left(\frac{d_L(R)}{s_r} \right) = \sum_{R \in B_L(s_1, \ldots, s_r-1)} g_{s_r} \left(\frac{d_L(R)}{s_r} \right)
\]

\[
\geq |B_L'(s_1, \ldots, s_{r-1})| g_{s_r} \left(\frac{\sum_{R \in B_L(s_1, \ldots, s_{r-1})} d_L(R)}{|B_L'(s_1, \ldots, s_{r-1})|} \right)
\]

\[
= |B_L'(s_1, \ldots, s_{r-1})| g_{s_r} \left(\frac{\sum_{u \in W} D_L(u)}{|B_L'(s_1, \ldots, s_{r-1})|} \right) \quad (1)
\]

On the other hand \(s_1 \cdots s_{r-1} \leq s_1 \cdots s_r \leq \ln n \). Also, for every \(u \in W \), we have

\[
\frac{d_L(u)}{n^{r-1}} \geq \frac{\alpha}{2};
\]

hence, in view of

\[
\frac{\alpha}{2} \geq 2^{r-1} e^{-\sqrt{\ln n}/r} > 2^{r-1} e^{-r' \sqrt{\ln n}/(r-1)},
\]

we can apply the induction hypothesis to the sets \(U_1, \ldots, U_{r-1} \), the numbers \(s_1, \ldots, s_{r-1} \), and the set \(N_L(u) \subset U_1 \times \cdots \times U_{r-1} \). We obtain

\[
D_L(u) \geq \left(\frac{\alpha/2}{2^{r-1}} \right)^{(r-1)s_1 \cdots s_{r-1}} \left(\frac{n}{s_1} \right) \cdots \left(\frac{n}{s_{r-1}} \right)
\]

for every \(u \in W \). This, together with \(|W| \geq |L|/n^{r-1} \geq \alpha n/2\), gives

\[
\sum_{u \in W} D_L(u) \geq \frac{\alpha n}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)s_1 \cdots s_{r-1}} \left(\frac{n}{s_1} \right) \cdots \left(\frac{n}{s_{r-1}} \right).
\]

Note that the function \(g_{s_r}(x/k) \) is non-increasing in \(k \) for \(k \geq 1 \). Hence, from

\[
|B_L'(s_1, \ldots, s_{r-1})| \leq \left(\frac{n}{s_1} \right) \cdots \left(\frac{n}{s_{r-1}} \right)
\]
and (1), we obtain

\[
\left| B_L (s_1, \ldots, s_r) \right| \geq \left(\frac{n}{s_1} \right) \cdots \left(\frac{n}{s_{r-1}} \right) g_{s_r} \left(\left(\frac{n}{s_1} \right)^{-1} \cdots \left(\frac{n}{s_{r-1}} \right)^{-1} \sum_{u \in W} D_L (u) \right)
\]
\[
\geq \left(\frac{n}{s_1} \right) \cdots \left(\frac{n}{s_{r-1}} \right) g_{s_r} \left(\frac{\alpha}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)s_1 \cdots s_{r-1}} n \right). \quad (2)
\]

To continue the proof we need the following

Claim 4 The condition

\[
2^r \exp \left(-\frac{1}{r} (\ln n)^{1/r} \right) \leq \alpha \leq 1
\]

implies that

\[
\frac{\alpha}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)s_1 \cdots s_{r-1}} n \geq 2s_r. \quad (4)
\]

Proof By a simple calculation we see that (3) implies that \(n > 16 \). Also, from (4) we have

\[
\frac{\alpha}{2} \geq e^{-\sqrt{\ln n}/r},
\]

and, by \(s_1 \cdots s_r \leq \ln n \), we obtain

\[
\frac{\alpha}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)s_1 \cdots s_r} \geq \frac{\alpha}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)\ln n} \geq e^{-\sqrt{\ln n}/r} \left(e^{-\sqrt{\ln n}/r} \right)^{(r-1)\ln n} = (e^{r-1}n)^{-\sqrt{\ln n}/r}. \quad (5)
\]

Using routine calculus, we find that the function \((2x/n)^x\) is increasing for \(x \geq 1 \) and \(n \geq 16 \). This fact, together with

\[
1 \leq s_r \leq (s_1 \cdots s_{r-1}s_r)^{1/r} \leq \sqrt[2r]{\ln n},
\]

implies that

\[
\left(\frac{2\sqrt[2r]{\ln n}}{n} \right)^{\sqrt[2r]{\ln n}} \geq \left(\frac{2s_r}{n} \right)^{s_r}. \quad (6)
\]

For \(n \geq 16 \) we easily see that

\[
\left(\frac{n}{e} \right)^{r-1} \frac{1}{2^r} \geq \left(\frac{n}{e} \right)^{2} \frac{1}{8} \geq \left(\frac{n}{8} \right)^{2} \geq \frac{n}{4} \geq \ln n,
\]

and so,

\[
(e^{r-1}n)^{-1/r} \geq \frac{2\sqrt[2r]{\ln n}}{n}.
\]
and
\[(e^{r-1}n)^{-\sqrt{\ln n}/r} \geq \left(\frac{2\sqrt{\ln n}}{n}\right)^{\sqrt{\ln n}}.\]

This, together with (5) and (6) gives
\[\frac{\alpha}{2} \left(\frac{\alpha}{2r}\right)^{(r-1)s_1\ldots s_r} \geq \left(\frac{2s_r}{n}\right)^{s_r},\]
completing the proof of the claim. \(\square\)

From (2) and the definition of \(g_{s_r}(x)\) we see that
\[|B_L(s_1, \ldots, s_r)| \geq \left(\frac{n}{s_1}\right) \cdots \left(\frac{n}{s_{r-1}}\right) \left(\frac{\alpha}{2}\right)^{(r-1)s_1\ldots s_r} \left(\frac{n}{s_1}\right) \cdots \left(\frac{n}{s_r}\right)\]
\[> \left(\frac{\alpha}{2r}\right)^{s_1\ldots s_r} \left(\frac{n}{s_1}\right) \cdots \left(\frac{n}{s_r}\right),\]
completing the induction step and the proof of Theorem 3. \(\square\)

Proof of Theorem 2 Using the procedure in Theorem 3, we first find \(W \subset U_r\) and

\[L \subset M \cap (U_1 \times \cdots \times U_{r-1} \times W)\]
with \(|L| > (\alpha/2) n^r\) such that \(d_L(u) \geq \alpha/n^{r-1}\) for all \(u \in W\).

For every \(R \in B_{s_{r-1}}(s_1, \ldots, s_{r-1})\), the value \(d_L(R)\) is equal to the number of elements of \(L\) containing \(R\). Hence,

\[\sum_{R \in B_{s_{r-1}}(s_1, \ldots, s_{r-1})} d_L(R) = |L|\]

Likewise, for every \(u \in W\), the value \(D_L(R)\) is equal to the number of elements of \(L\) containing \(u\). Hence,

\[\sum_{u \in W} D_L(u) = |L| .\]

Let
\[t = \max \{d_L(R) : R \in B_{s_{r-1}}(s_1, \ldots, s_{r-1})\} .\]

We have
\[t^\left(\frac{n}{s_1}\right) \cdots \left(\frac{n}{s_{r-1}}\right) \geq t|B_{s_{r-1}}(s_1, \ldots, s_{r-1})| \geq |L| = \sum_{u \in W} D_L(u) .\]
(7)
To continue the proof we need the following

Claim 5 *The condition \((\ln n)^{-1/(r-1)} \leq \alpha \leq r^{-3}\) implies that*

\[
2^{r-1} \exp \left(-\frac{1}{r-1} (\ln n)^{1/(r-1)} \right) \leq \frac{\alpha}{2} \leq 1
\]

Proof The second inequality is obvious, so all we have to prove is that

\[
\ln \frac{\alpha}{2^r} \geq -\frac{1}{r-1} (\ln n)^{1/(r-1)}.
\]

The function \(x^x\) decreases for \(0 < x < e^{-1}\), and \(\alpha \leq r^{-3}\); hence

\[
\alpha \ln \frac{\alpha}{2^r} \geq \frac{1}{r^3} \ln \frac{1}{r^3 2^r} = -\frac{1}{r^3} (3 \ln r + r \ln 2) > -\frac{3r}{r^3} \geq -\frac{1}{r},
\]

and so,

\[
\ln \frac{\alpha}{2^r} > -\frac{1}{(r-1) \alpha} \geq -\frac{1}{r-1} (\ln n)^{-1/(r-1)},
\]

completing the proof of the claim. \(\square\)

Since for every \(u \in W\) we have

\[
d_L(u) / n^{r-1} \geq \frac{\alpha}{2},
\]

in view of Claim 5, we may apply Theorem 3 to the sets \(U_1, \ldots, U_{r-1}\), the numbers \(s_1, \ldots, s_{r-1}\), and the set \(N_L(u) \subset U_1 \times \cdots \times U_{r-1}\), thus obtaining

\[
D_L(u) \geq \left(\frac{\alpha/2}{2^{r-1}} \right)^{(r-1)s_1 \cdots s_{r-1}} \binom{n}{s_1} \cdots \binom{n}{s_{r-1}}
\]

for every \(u \in W\). This, together with \(|W| \geq |L| / n^{r-1} \geq \alpha n / 2\), gives

\[
\sum_{u \in W} D_L(u) \geq \frac{\alpha n}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)s_1 \cdots s_{r-1}} \binom{n}{s_1} \cdots \binom{n}{s_{r-1}}.
\]

Substituting this bound in (7), we find that

\[
t \geq \frac{\alpha}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1)s_1 \cdots s_{r-1}} n \geq \frac{\alpha}{2} \left(\frac{\alpha}{2^r} \right)^{(r-1) \alpha^{r-1} \ln n} n > \left(\frac{\alpha}{2^r} \right)^{ra^{r-1} \ln n} n.
\]

Finally, (8) gives

\[
\left(\frac{\alpha}{2^r} \right)^{ra^{r-1} \ln n} > e^{-\alpha^{r-2} \ln n} = n^{-\alpha^{r-2}},
\]

8
Proof of Theorem 1 Suppose r, α, n, and G satisfy the conditions of the theorem. Let U_1, \ldots, U_r be r copies of the vertex set V of G, and let $M \subset U_1 \times \cdots \times U_r$ be the set of r-vectors (u_1, \ldots, u_r) such that $\{u_1, \ldots, u_r\}$ is an edge of G. Clearly, $|M| \geq r!(\alpha n^r/r!) = \alpha n^r$. Theorem 2 implies that there exists a set $V'_1 \times \cdots \times V'_r \subset M$ such that $V'_i \subset U_i$ and $|V'_i| = s_i$ for $1 \leq i < r$, and $|V'_r| > n^{1-\alpha r-2}$. Let V_1, \ldots, V_r be the subsets of V, corresponding to $V'_1 \times \cdots \times V'_r$. The sets V_1, \ldots, V_r are disjoint, for the edges of G consist of distinct vertices. Hence V_1, \ldots, V_r are the vertex classes of an r-partite subgraph of G with the desired size.

References

